Function suggests nano-structure: electrophysiology supports that granule membranes play dice
- PMID: 22628211
- PMCID: PMC3427504
- DOI: 10.1098/rsif.2012.0161
Function suggests nano-structure: electrophysiology supports that granule membranes play dice
Abstract
Cellular communication depends on membrane fusion mechanisms. SNARE proteins play a fundamental role in all intracellular fusion reactions associated with the life cycle of secretory vesicles, such as vesicle-vesicle and vesicle plasma membrane fusion at the porosome base in the cell plasma membrane. We present growth and elimination (G&E), a birth and death model for the investigation of granule growth, its evoked and spontaneous secretion and their information content. Using a statistical mechanics approach in which SNARE components are viewed as interacting particles, the G&E model provides a simple 'nano-machine' of SNARE self-aggregation behind granule growth and secretion. Results from experimental work, mathematical calculations and statistical modelling suggest that for vesicle growth a minimal aggregation of three SNAREs is required, while for the evoked secretion one SNARE is enough. Furthermore, the required number of SNARE aggregates (which varies between cell types and is nearly proportional to the square root of the mean granule diameter) affects and is statistically identifiable from the size distributions of spontaneous and evoked secreted granules. The new statistical mechanics approach to granule fusion is bound to have a significant changing effect on the investigation of the pathophysiology of secretory mechanisms and methodologies for the investigation of secretion.
Figures



Similar articles
-
Function suggests nano-structure: towards a unified theory for secretion rate, a statistical mechanics approach.J R Soc Interface. 2013 Sep 4;10(88):20130640. doi: 10.1098/rsif.2013.0640. Print 2013 Nov 6. J R Soc Interface. 2013. PMID: 24004560 Free PMC article.
-
The stealthy nano-machine behind mast cell granule size distribution.Mol Immunol. 2015 Jan;63(1):45-54. doi: 10.1016/j.molimm.2014.02.005. Epub 2014 Mar 12. Mol Immunol. 2015. PMID: 24629227 Review.
-
Cellular secretion studied by force microscopy.J Cell Mol Med. 2006 Oct-Dec;10(4):847-56. doi: 10.1111/j.1582-4934.2006.tb00529.x. J Cell Mol Med. 2006. PMID: 17125589 Free PMC article. Review.
-
Discovery of the Porosome: revealing the molecular mechanism of secretion and membrane fusion in cells.J Cell Mol Med. 2004 Jan-Mar;8(1):1-21. doi: 10.1111/j.1582-4934.2004.tb00255.x. J Cell Mol Med. 2004. PMID: 15090256 Free PMC article. Review.
-
The econobiology of pancreatic acinar cells granule inventory and the stealthy nano-machine behind it.Acta Histochem. 2016 Mar;118(2):194-202. doi: 10.1016/j.acthis.2015.11.011. Epub 2015 Dec 17. Acta Histochem. 2016. PMID: 26702787 Review.
Cited by
-
Function suggests nano-structure: towards a unified theory for secretion rate, a statistical mechanics approach.J R Soc Interface. 2013 Sep 4;10(88):20130640. doi: 10.1098/rsif.2013.0640. Print 2013 Nov 6. J R Soc Interface. 2013. PMID: 24004560 Free PMC article.
-
Function Suggests Nano-Structure: Quantitative Structural Support for SNARE-Mediated Pore Formation.Neurotox Res. 2016 Jan;29(1):1-9. doi: 10.1007/s12640-015-9559-3. Epub 2015 Sep 25. Neurotox Res. 2016. PMID: 26407673
-
Quantal Basis of Secretory Granule Biogenesis and Inventory Maintenance: the Surreptitious Nano-machine Behind It.Discoveries (Craiova). 2014 Sep 2;2(3):e21. doi: 10.15190/d.2014.13. Discoveries (Craiova). 2014. PMID: 32309550 Free PMC article.
-
Neuronal Porosome-The Secretory Portal at the Nerve Terminal: It's Structure-Function, Composition, and Reconstitution.J Mol Struct. 2014 Sep 5;1073:187-195. doi: 10.1016/j.molstruc.2014.04.055. J Mol Struct. 2014. PMID: 26412873 Free PMC article.
-
Phosphorylation of SNAP-23 regulates its dynamic membrane association during mast cell exocytosis.Biol Open. 2017 Sep 15;6(9):1257-1269. doi: 10.1242/bio.025791. Biol Open. 2017. PMID: 28784843 Free PMC article.
References
-
- Augustine G. J., Kasai H. 2007. Bernard Katz, Quantal transmitter release and the foundations of presynaptic physiology. J. Physiol. 578, 623–62510.1113/jphysiol.2006.123224 (doi:10.1113/jphysiol.2006.123224) - DOI - DOI - PMC - PubMed
-
- Becherer U., Rettig J. 2006. Vesicle pools, docking, priming, and release. Cell Tissue Res. 326, 393–40710.1007/s00441-006-0243-z (doi:10.1007/s00441-006-0243-z) - DOI - DOI - PubMed
-
- Buckley K. M., Melikian H. E., Provoda C. J., Waring M. T. 2000. Regulation of neuronal function by protein trafficking: a role for the endosomal pathway. J. Physiol. 525, 11–1910.1111/j.1469-7793.2000.t01-2-00011.x (doi:10.1111/j.1469-7793.2000.t01-2-00011.x) - DOI - DOI - PMC - PubMed
-
- Collins R. N., Zimmerberg J. 2009. Cell biology: a score for membrane fusion. Nature 459, 1065–106610.1038/4591065a (doi:10.1038/4591065a) - DOI - DOI - PubMed
-
- Ryan T. A. 2006. A pre-synaptic to-do list for coupling exocytosis to endocytosis. Curr. Opin. Cell Biol. 18, 416–42110.1016/j.ceb.2006.06.013 (doi:10.1016/j.ceb.2006.06.013) - DOI - DOI - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources