Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2012 Jan;393(1-2):11-21.
doi: 10.1515/BC-2011-227.

Oxidative stress in Fanconi anaemia: from cells and molecules towards prospects in clinical management

Affiliations
Free article
Review

Oxidative stress in Fanconi anaemia: from cells and molecules towards prospects in clinical management

Giovanni Pagano et al. Biol Chem. 2012 Jan.
Free article

Abstract

Fanconi anaemia (FA) is a genetic disease featuring bone marrow failure, proneness to malignancies, and chromosomal instability. A line of studies has related FA to oxidative stress (OS). This review attempts to evaluate the evidence for FA-associated redox abnormalities in the literature from 1981 to 2010. Among 2170 journal articles on FA evaluated, 162 related FA with OS. Early studies reported excess oxygen toxicity in FA cells that accumulated oxidative DNA damage. Prooxidant states were found in white blood cells and body fluids from FA patients as excess luminol-dependent chemiluminescence, 8-hydroxy-deoxyguanosine, reduced glutathione/oxidized glutathione imbalance, and tumour necrosis factor-α. Some FA gene products involved in redox homeostasis can be summarized as follows: (a) FANCA, FANCC, and FANCG interact with cytochrome P450-related activities and/or respond to oxidative damage; (b) FANCD2 in OS response interacts with forkhead box O3 and ataxia telangiectasia mutated protein; (c) FANCG is found in mitochondria and interacts with PRDX3, and FA-G cells display distorted mitochondria and decreased peroxidase activity; (d) FANCJ (BACH1/BRIP1) is a repressor of haeme oxygenase-1 gene and senses oxidative base damage; (e) antioxidants, such as tempol and resveratrol decrease cancer incidence and haematopoietic defects in Fancd2(-/-) mice. The overall evidence for FA-associated OS may suggest designing chemoprevention studies aimed at delaying the onset of OS-related clinical complications.

PubMed Disclaimer

Publication types

LinkOut - more resources