Direct observation of the interconversion of normal and toxic forms of α-synuclein
- PMID: 22632969
- PMCID: PMC3383996
- DOI: 10.1016/j.cell.2012.03.037
Direct observation of the interconversion of normal and toxic forms of α-synuclein
Abstract
Here, we use single-molecule techniques to study the aggregation of α-synuclein, the protein whose misfolding and deposition is associated with Parkinson's disease. We identify a conformational change from the initially formed oligomers to stable, more compact proteinase-K-resistant oligomers as the key step that leads ultimately to fibril formation. The oligomers formed as a result of the structural conversion generate much higher levels of oxidative stress in rat primary neurons than do the oligomers formed initially, showing that they are more damaging to cells. The structural conversion is remarkably slow, indicating a high kinetic barrier for the conversion and suggesting that there is a significant period of time for the cellular protective machinery to operate and potentially for therapeutic intervention, prior to the onset of cellular damage. In the absence of added soluble protein, the assembly process is reversed and fibrils disaggregate to form stable oligomers, hence acting as a source of cytotoxic species.
Copyright © 2012 Elsevier Inc. All rights reserved.
Figures












Comment in
-
Single-molecule approach to find out toxic oligomeric alpha-synuclein species formation.Mov Disord. 2012 Oct;27(12):1493. doi: 10.1002/mds.25180. Mov Disord. 2012. PMID: 23460945 No abstract available.
Similar articles
-
Kinetic model of the aggregation of alpha-synuclein provides insights into prion-like spreading.Proc Natl Acad Sci U S A. 2016 Mar 1;113(9):E1206-15. doi: 10.1073/pnas.1524128113. Epub 2016 Feb 16. Proc Natl Acad Sci U S A. 2016. PMID: 26884195 Free PMC article.
-
Direct visualization of alpha-synuclein oligomers reveals previously undetected pathology in Parkinson's disease brain.Brain. 2015 Jun;138(Pt 6):1642-57. doi: 10.1093/brain/awv040. Epub 2015 Mar 1. Brain. 2015. PMID: 25732184 Free PMC article.
-
The release of toxic oligomers from α-synuclein fibrils induces dysfunction in neuronal cells.Nat Commun. 2021 Mar 22;12(1):1814. doi: 10.1038/s41467-021-21937-3. Nat Commun. 2021. PMID: 33753734 Free PMC article.
-
Alteration of Structure and Aggregation of α-Synuclein by Familial Parkinson's Disease Associated Mutations.Curr Protein Pept Sci. 2017;18(7):656-676. doi: 10.2174/1389203717666160314151706. Curr Protein Pept Sci. 2017. PMID: 26972727 Review.
-
Effects of oligomer toxicity, fibril toxicity and fibril spreading in synucleinopathies.Cell Mol Life Sci. 2022 Mar 4;79(3):174. doi: 10.1007/s00018-022-04166-9. Cell Mol Life Sci. 2022. PMID: 35244787 Free PMC article. Review.
Cited by
-
Curcumin modulates α-synuclein aggregation and toxicity.ACS Chem Neurosci. 2013 Mar 20;4(3):393-407. doi: 10.1021/cn3001203. Epub 2012 Dec 17. ACS Chem Neurosci. 2013. PMID: 23509976 Free PMC article.
-
Single-Molecule Detection of α-Synuclein Oligomers in Parkinson's Disease Patients Using Nanopores.ACS Nano. 2023 Nov 28;17(22):22999-23009. doi: 10.1021/acsnano.3c08456. Epub 2023 Nov 10. ACS Nano. 2023. PMID: 37947369 Free PMC article.
-
Curcumin Pyrazole and its derivative (N-(3-Nitrophenylpyrazole) Curcumin inhibit aggregation, disrupt fibrils and modulate toxicity of Wild type and Mutant α-Synuclein.Sci Rep. 2015 May 18;5:9862. doi: 10.1038/srep09862. Sci Rep. 2015. PMID: 25985292 Free PMC article.
-
α-Synuclein oligomers form by secondary nucleation.Nat Commun. 2024 Aug 17;15(1):7083. doi: 10.1038/s41467-024-50692-4. Nat Commun. 2024. PMID: 39153989 Free PMC article.
-
Misfolded α-synuclein causes hyperactive respiration without functional deficit in live neuroblastoma cells.Dis Model Mech. 2020 Jan 17;13(1):dmm040899. doi: 10.1242/dmm.040899. Dis Model Mech. 2020. PMID: 31848207 Free PMC article.
References
-
- Abeliovich A., Schmitz Y., Fariñas I., Choi-Lundberg D., Ho W.H., Castillo P.E., Shinsky N., Verdugo J.M., Armanini M., Ryan A. Mice lacking alpha-synuclein display functional deficits in the nigrostriatal dopamine system. Neuron. 2000;25:239–252. - PubMed
-
- Apetri M.M., Maiti N.C., Zagorski M.G., Carey P.R., Anderson V.E. Secondary structure of alpha-synuclein oligomers: characterization by raman and atomic force microscopy. J. Mol. Biol. 2006;355:63–71. - PubMed
-
- Balch W.E., Morimoto R.I., Dillin A., Kelly J.W. Adapting proteostasis for disease intervention. Science. 2008;319:916–919. - PubMed
-
- Bolognesi B., Kumita J.R., Barros T.P., Esbjorner E.K., Luheshi L.M., Crowther D.C., Wilson M.R., Dobson C.M., Favrin G., Yerbury J.J. ANS binding reveals common features of cytotoxic amyloid species. ACS Chem. Biol. 2010;5:735–740. - PubMed
-
- Bonini N.M., Giasson B.I. Snaring the function of alpha-synuclein. Cell. 2005;123:359–361. - PubMed
Supplemental References
-
- Orte, A., Clarke, R., Balasubramanian, S., and Klenerman, D. (2006). Determination of the fraction and stoichiometry of femtomolar levels of biomolecular complexes in an excess of monomer using single-molecule, two-color coincidence detection. Anal. Chem. 78, 7707–7715. - PubMed
-
- Panchuk-Voloshina, N., Haugland, R.P., Bishop-Stewart, J., Bhalgat, M.K., Millard, P.J., Mao, F., Leung, W.Y., and Haugland, R.P. (1999). Alexa dyes, a series of new fluorescent dyes that yield exceptionally bright, photostable conjugates. J. Histochem. Cytochem. 47, 1179–1188. - PubMed
-
- Uversky, V.N., Li, J., and Fink, A.L. (2001). Evidence for a partially folded intermediate in alpha-synuclein fibril formation. J. Biol. Chem. 276, 10737–10744. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources