Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2013 Mar;40(1):19-28.
doi: 10.1016/j.neurad.2012.02.005. Epub 2012 May 25.

Evaluation of luminal and vessel wall abnormalities in subacute and other stages of intracranial vertebrobasilar artery dissections using the volume isotropic turbo-spin-echo acquisition (VISTA) sequence: a preliminary study

Affiliations

Evaluation of luminal and vessel wall abnormalities in subacute and other stages of intracranial vertebrobasilar artery dissections using the volume isotropic turbo-spin-echo acquisition (VISTA) sequence: a preliminary study

Keita Sakurai et al. J Neuroradiol. 2013 Mar.

Abstract

Objective: To evaluate the utility of 3D variable refocusing flip-angle volume isotropic turbo-spin-echo acquisition (VISTA) imaging, using a 1.5-T MRI unit, which can minimize flow artifacts, due to its sequence-endogenous flow-void capability, in the diagnosis of intracranial vertebrobasilar artery dissection (VAD).

Material and methods: The presence of intimal flaps, intramural hematomas, vessel dilatations and abnormal vessel enhancements were evaluated on T1-weighted VISTA images from 18 VAD patients with 20 dissected arteries (15 subacute and five at other stages). Additional gadolinium-enhanced T1VISTA images were available for 13 patients. The frequency of flow artifacts on T1VISTA imaging in 70 non-dissected arteries in VAD patients and 12 control subjects was also evaluated. Furthermore, in 13 and eight patients, contrast-enhanced three-dimensional (CE3D) imaging with spoiled gradient-recalled (SPGR) acquisition in steady state and electrocardiographically gated black-blood (BB) T1-weighted imaging (T1WI) were evaluated to compare visualization of false lumens.

Results: Intimal flaps, intramural hematomas and dilatations were identified on T1VISTA images in 65% (13/20), 55% (11/20) and 90% (18/20) of VADs, respectively. Abnormal vessel enhancement was recognized in 100% (15/15) of VADs on contrast-enhanced T1VISTA images. Only four normal arteries showed small, thin, linear artifacts. Compared with CE3D-SPGR imaging, T1VISTA imaging depicted false lumens more conspicuously in seven VADs (P=0.02). T1VISTA also revealed intimal flaps and hematomas as did BB T1WI.

Conclusion: T1VISTA imaging may be useful for diagnosing VAD at subacute stages, as it can reveal vessel wall and lumen abnormalities with a minimum of flow artifacts.

PubMed Disclaimer

LinkOut - more resources