Hemoproteins in dissimilatory sulfate- and sulfur-reducing prokaryotes
- PMID: 22633058
- DOI: 10.1016/B978-0-12-398264-3.00001-2
Hemoproteins in dissimilatory sulfate- and sulfur-reducing prokaryotes
Abstract
Dissimilatory sulfate and sulfur reduction evolved billions of years ago and while the bacteria and archaea that use this unique metabolism employ a variety of electron donors, H(2) is most commonly used as the energy source. These prokaryotes use multiheme c-type proteins to shuttle electrons from electron donors, and electron transport complexes presumed to contain b-type hemoproteins contribute to proton charging of the membrane. Numerous sulfate and sulfur reducers use an alternate pathway for heme synthesis and, frequently, uniquely specific axial ligands are used to secure c-type heme to the protein. This review presents some of the types and functional activities of hemoproteins involved in these two dissimilatory reduction pathways.
Copyright © 2012 Elsevier Ltd. All rights reserved.
Similar articles
-
Hydrogen sulfide: a toxic gas produced by dissimilatory sulfate and sulfur reduction and consumed by microbial oxidation.Met Ions Life Sci. 2014;14:237-77. doi: 10.1007/978-94-017-9269-1_10. Met Ions Life Sci. 2014. PMID: 25416397 Review.
-
Clustered genes related to sulfate respiration in uncultured prokaryotes support the theory of their concomitant horizontal transfer.J Bacteriol. 2005 Oct;187(20):7126-37. doi: 10.1128/JB.187.20.7126-7137.2005. J Bacteriol. 2005. PMID: 16199583 Free PMC article.
-
Enzymatic basis for assimilatory and dissimilatory sulfate reduction.J Bacteriol. 1961 Dec;82(6):933-9. doi: 10.1128/jb.82.6.933-939.1961. J Bacteriol. 1961. PMID: 14484818 Free PMC article.
-
Metabolism of sulfate-reducing prokaryotes.Antonie Van Leeuwenhoek. 1994;66(1-3):165-85. doi: 10.1007/BF00871638. Antonie Van Leeuwenhoek. 1994. PMID: 7747930 Review.
-
Linkage of high rates of sulfate reduction in Yellowstone hot springs to unique sequence types in the dissimilatory sulfate respiration pathway.Appl Environ Microbiol. 2003 Jun;69(6):3663-7. doi: 10.1128/AEM.69.6.3663-3667.2003. Appl Environ Microbiol. 2003. PMID: 12788778 Free PMC article.
Cited by
-
The impact of bacterial diversity on resistance to biocides in oilfields.Sci Rep. 2021 Nov 29;11(1):23027. doi: 10.1038/s41598-021-02494-7. Sci Rep. 2021. PMID: 34845279 Free PMC article.
-
Genome Sequence of Desulfurella amilsii Strain TR1 and Comparative Genomics of Desulfurellaceae Family.Front Microbiol. 2017 Feb 20;8:222. doi: 10.3389/fmicb.2017.00222. eCollection 2017. Front Microbiol. 2017. PMID: 28265263 Free PMC article.
-
Sulfur Cycling and the Intestinal Microbiome.Dig Dis Sci. 2017 Sep;62(9):2241-2257. doi: 10.1007/s10620-017-4689-5. Epub 2017 Aug 1. Dig Dis Sci. 2017. PMID: 28766244 Review.
-
Nature's nitrite-to-ammonia expressway, with no stop at dinitrogen.J Biol Inorg Chem. 2022 Feb;27(1):1-21. doi: 10.1007/s00775-021-01921-4. Epub 2021 Dec 5. J Biol Inorg Chem. 2022. PMID: 34865208 Free PMC article. Review.
-
Phylogeny, distribution and potential metabolism of candidate bacterial phylum KSB1.PeerJ. 2022 Apr 12;10:e13241. doi: 10.7717/peerj.13241. eCollection 2022. PeerJ. 2022. PMID: 35433121 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources