FeoB2 Functions in magnetosome formation and oxidative stress protection in Magnetospirillum gryphiswaldense strain MSR-1
- PMID: 22636767
- PMCID: PMC3416554
- DOI: 10.1128/JB.00382-12
FeoB2 Functions in magnetosome formation and oxidative stress protection in Magnetospirillum gryphiswaldense strain MSR-1
Abstract
Magnetotactic bacteria (MTB) synthesize unique organelles, the magnetosomes, which are intracellular nanometer-sized, membrane-enveloped magnetite. The biomineralization of magnetosomes involves the uptake of large amounts of iron. However, the iron metabolism of MTB is not well understood. The genome of the magnetotactic bacterium Magnetospirillum gryphiswaldense strain MSR-1 contains two ferrous iron transport genes, feoB1 and feoB2. The FeoB1 protein was reported to be responsible mainly for the transport of ferrous iron and to play an accessory role in magnetosome formation. To determine the role of feoB2, we constructed an feoB2 deletion mutant (MSR-1 ΔfeoB2) and an feoB1 feoB2 double deletion mutant (MSR-1 NfeoB). The single feoB2 mutation did not affect magnetite crystal biomineralization. MSR-1 NfeoB had a significantly lower average magnetosome number per cell (∼65%) than MSR-1 ΔfeoB1, indicating that FeoB2 plays a role in magnetosome formation when the feoB1 gene is deleted. Our findings showed that FeoB1 has a greater ferrous iron transport ability than FeoB2 and revealed the differential roles of FeoB1 and FeoB2 in MSR-1 iron metabolism. Interestingly, compared to the wild type, the feoB mutants showed increased sensitivity to oxidative stress and lower activities of the enzymes superoxide dismutase and catalase, indicating that the FeoB proteins help protect bacterial cells from oxidative stress.
Figures




Similar articles
-
Ferrous iron transport protein B gene (feoB1) plays an accessory role in magnetosome formation in Magnetospirillum gryphiswaldense strain MSR-1.Res Microbiol. 2008 Sep-Oct;159(7-8):530-6. doi: 10.1016/j.resmic.2008.06.005. Epub 2008 Jun 28. Res Microbiol. 2008. PMID: 18639631
-
The MagA protein of Magnetospirilla is not involved in bacterial magnetite biomineralization.J Bacteriol. 2012 Mar;194(5):1018-23. doi: 10.1128/JB.06356-11. Epub 2011 Dec 22. J Bacteriol. 2012. PMID: 22194451 Free PMC article.
-
Expression patterns of key iron and oxygen metabolism genes during magnetosome formation in Magnetospirillum gryphiswaldense MSR-1.FEMS Microbiol Lett. 2013 Oct;347(2):163-72. doi: 10.1111/1574-6968.12234. Epub 2013 Sep 6. FEMS Microbiol Lett. 2013. PMID: 23937222
-
Molecular analysis of a subcellular compartment: the magnetosome membrane in Magnetospirillum gryphiswaldense.Arch Microbiol. 2004 Jan;181(1):1-7. doi: 10.1007/s00203-003-0631-7. Epub 2003 Dec 11. Arch Microbiol. 2004. PMID: 14668979 Review.
-
The bacterial magnetosome: a unique prokaryotic organelle.J Mol Microbiol Biotechnol. 2013;23(1-2):63-80. doi: 10.1159/000346543. Epub 2013 Apr 18. J Mol Microbiol Biotechnol. 2013. PMID: 23615196 Review.
Cited by
-
Changes of cell growth and magnetosome biomineralization in Magnetospirillum magneticum AMB-1 after ultraviolet-B irradiation.Front Microbiol. 2013 Dec 19;4:397. doi: 10.3389/fmicb.2013.00397. Front Microbiol. 2013. PMID: 24391631 Free PMC article. Review.
-
The LysR-type transcription factor HbrL is a global regulator of iron homeostasis and porphyrin synthesis in Rhodobacter capsulatus.Mol Microbiol. 2013 Dec;90(6):1277-92. doi: 10.1111/mmi.12431. Epub 2013 Nov 8. Mol Microbiol. 2013. PMID: 24134691 Free PMC article.
-
The transcriptomic landscape of Magnetospirillum gryphiswaldense during magnetosome biomineralization.BMC Genomics. 2022 Oct 10;23(1):699. doi: 10.1186/s12864-022-08913-x. BMC Genomics. 2022. PMID: 36217140 Free PMC article.
-
An Integrated Approach to Elucidate the Interplay between Iron Uptake Dynamics and Magnetosome Formation at the Single-Cell Level in Magnetospirillum gryphiswaldense.ACS Appl Mater Interfaces. 2024 Nov 13;16(45):62557-62570. doi: 10.1021/acsami.4c15975. Epub 2024 Oct 31. ACS Appl Mater Interfaces. 2024. PMID: 39480433 Free PMC article.
-
Magnetotactic Bacteria Accumulate a Large Pool of Iron Distinct from Their Magnetite Crystals.Appl Environ Microbiol. 2020 Oct 28;86(22):e01278-20. doi: 10.1128/AEM.01278-20. Print 2020 Oct 28. Appl Environ Microbiol. 2020. PMID: 32887716 Free PMC article.
References
-
- Andrews SC, Robinson AK, Rodriguez-Quinones F. 2003. Bacterial iron homeostasis. FEMS Microbiol. Rev. 27:215–237 - PubMed
-
- Bazylinski DA, Frankel RB. 2004. Magnetosome formation in prokaryotes. Nat. Rev. Microbiol. 2:217–230 - PubMed
-
- Calugay RJ, Miyashita H, Okamura Y, Matsunaga T. 2003. Siderophore production by the magnetic bacterium Magnetospirillum magneticum AMB-1. FEMS Microbiol. Lett. 218:371–375 - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases