Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2012 Jul 2;51(27):6613-7.
doi: 10.1002/anie.201202856. Epub 2012 May 25.

Copper-catalyzed enantioselective allylic substitution with readily accessible carbonyl- and acetal-containing vinylboron reagents

Affiliations

Copper-catalyzed enantioselective allylic substitution with readily accessible carbonyl- and acetal-containing vinylboron reagents

Fang Gao et al. Angew Chem Int Ed Engl. .
No abstract available

PubMed Disclaimer

Figures

Scheme 1
Scheme 1
A route for enantioselective synthesis of Pummerer ketone might involve catalytic allylic substitution with a carbonyl-containing vinyl group followed by a catalytic diastereoselective intramolecular conjugate addition and catalytic ring-closing metathesis. pg = protecting group.
Scheme 2
Scheme 2
Products of NHC–Cu-catalyzed EAS of various trisubstituted allylic phosphates and different readily accessible vinylborons. All reactions were performed with 5.5 mol % 6b; see Table 2 for conditions and the Supporting Information for details).
Scheme 3
Scheme 3
NHC–Cu-catalyzed EAS with allylic phosphates and carboxylic ester containing vinylboron 13.
Scheme 4
Scheme 4
NHC–Cu-catalyzed EAS of allylic phosphates with acetal-containing alkenylboron 16.
Scheme 5
Scheme 5
Syntheses of Pummerer ketone and its anti isomer involving NHC–Cu-catalyzed EAS, cinchona alkaloid-catalyzed diastereoselective intramolecular conjugate addition and Ru-catalyzed ring-closing metathesis.

References

    1. For reviews of catalytic enantioselective allylic substitution (EAS) reactions with “hard” organometallic nucleophiles, see: Hoveyda AH, Hird AW, Kacprzynski MA. Chem Commun. 2004:1779–1785.Yorimitsu H, Oshima K. Angew Chem Int Ed. 2005;44:4435–4439.Harutyunyan SR, den Hartog T, Geurts K, Minnaard AJ, Feringa BL. Chem Rev. 2008;108:2824–2852.Alexakis A, Bäckvall JE, Krause N, Pàmies O, Diéguez M. Chem Rev. 2008;108:2796–2823.

    1. Kacprzynski MA, May TL, Kazane SA, Hoveyda AH. Angew Chem Int Ed. 2007;46:4554–4558. - PubMed
    2. Selim KB, Yamada K-i, Tomioka K. Chem Commun. 2008:5140–5142. - PubMed
    3. Falciola CA, Alexakis A. Chem Eur J. 2008;14:10615–10627. - PubMed
    4. Selim KB, Matsumoto Y, Yamada K-i, Tomioka K. Angew Chem Int Ed. 2009;48:8733–8735. - PubMed
    5. Polet D, Rathgeb X, Falciola CA, Langlois JB, Hajjaji SE, Alexakis A. Chem Eur J. 2009;15:1205–1216. - PubMed
    6. Gao F, Lee Y, Mandai K, Hoveyda AH. Angew Chem Int Ed. 2010;49:8370–8374. - PMC - PubMed
    1. Zhang P, Brozek LA, Morken JP. J Am Chem Soc. 2010;132:10686–10688. - PMC - PubMed
    2. Zhang P, Le H, Kyne RE, Morken JP. J Am Chem Soc. 2011;133:9716–9719. - PMC - PubMed
    1. Dabrowski JA, Gao F, Hoveyda AH. J Am Chem Soc. 2011;133:4778–4781. - PMC - PubMed
    1. Jung B, Hoveyda AH. J Am Chem Soc. 2012;134:1490–1493. - PMC - PubMed

Publication types

LinkOut - more resources