Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2012 Jun;70(6):357-66.
doi: 10.1111/j.1753-4887.2012.00479.x.

Niacin: chemical forms, bioavailability, and health effects

Affiliations
Review

Niacin: chemical forms, bioavailability, and health effects

Douglas MacKay et al. Nutr Rev. 2012 Jun.

Abstract

Elevated low-density lipoprotein cholesterol (LDL-C) has been the main target of lipid-altering therapy to reduce cardiovascular risk associated with dyslipidemia. Residual cardiovascular risk remains, however, after achievement of goal LDL-C levels and is associated in part with other risk markers of cardiovascular disease, including low high-density lipoprotein cholesterol (HDL-C), high lipoprotein a, and hypertriglyceridemia. Niacin is considered a valuable agent for therapy to modify high LDL-C as well as low HDL-C, high lipoprotein a, and hypertriglyceridemia. The forms of niacin available in the marketplace include unbound niacin, or free nicotinic acid (NA); extended-release NA, a form of NA that is released gradually over a period of time; inositol hexanicotinate, six molecules of NA covalently bonded to one molecule of inositol; and nicotinamide, or niacinamide, the amide form of NA, which is readily bioavailable. This review is designed to assist healthcare professionals in evaluating the form(s) of niacin best suited for a particular therapeutic goal. Further, it provides a literature-based evaluation of risk for NA, extended-release NA, inositol hexanicotinate, and nicotinamide.

PubMed Disclaimer

MeSH terms