An online tool for calculation of free-energy balance for the renal inner medulla
- PMID: 22647629
- PMCID: PMC3433863
- DOI: 10.1152/ajprenal.00147.2012
An online tool for calculation of free-energy balance for the renal inner medulla
Abstract
Concentrating models of the renal inner medulla can be classified according to external free-energy balance into passive models (positive values) and models that require an external energy source (negative values). Here we introduce an online computational tool that implements the equations of Stephenson and colleagues (Stephenson JL, Tewarson RP, Mejia R. Proc Natl Acad Sci USA 71: 1618-1622, 1974) to calculate external free-energy balance at steady state for the inner medulla (http://helixweb.nih.gov/ESBL/FreeEnergy). Here "external free-energy balance" means the sum of free-energy flows in all streams entering and leaving the inner medulla. The program first assures steady-state mass balance for all components and then tallies net external free-energy balance for the selected flow conditions. Its use is illustrated by calculating external free-energy balance for an example of the passive concentrating model taken from the original paper by Kokko and Rector (Kokko JP, Rector FC Jr. Kidney Int 2: 214-223, 1972).
Figures





Similar articles
-
Current concepts of the countercurrent multiplication system.Kidney Int Suppl. 1996 Dec;57:S93-9. Kidney Int Suppl. 1996. PMID: 8941928 Review.
-
Inner medullary lactate production and accumulation: a vasa recta model.Am J Physiol Renal Physiol. 2000 Sep;279(3):F468-81. doi: 10.1152/ajprenal.2000.279.3.F468. Am J Physiol Renal Physiol. 2000. PMID: 10966926
-
Effect of vasa recta flow on concentrating ability of models of renal inner medulla.Am J Physiol. 1995 Apr;268(4 Pt 2):F698-709. doi: 10.1152/ajprenal.1995.268.4.F698. Am J Physiol. 1995. PMID: 7733327
-
Inner medullary lactate production and urine-concentrating mechanism: a flat medullary model.Am J Physiol Renal Physiol. 2003 Jan;284(1):F65-81. doi: 10.1152/ajprenal.00045.2002. Epub 2002 Aug 27. Am J Physiol Renal Physiol. 2003. PMID: 12388411
-
Concentration of solutes in the renal inner medulla: interstitial hyaluronan as a mechano-osmotic transducer.Am J Physiol Renal Physiol. 2003 Mar;284(3):F433-46. doi: 10.1152/ajprenal.00067.2002. Am J Physiol Renal Physiol. 2003. PMID: 12556362 Review.
Cited by
-
Comparative physiology and architecture associated with the mammalian urine concentrating mechanism: role of inner medullary water and urea transport pathways in the rodent medulla.Am J Physiol Regul Integr Comp Physiol. 2013 Apr 1;304(7):R488-503. doi: 10.1152/ajpregu.00456.2012. Epub 2013 Jan 30. Am J Physiol Regul Integr Comp Physiol. 2013. PMID: 23364530 Free PMC article. Review.
-
Thermodynamic considerations in renal separation processes.Theor Biol Med Model. 2017 Jan 26;14(1):2. doi: 10.1186/s12976-017-0048-7. Theor Biol Med Model. 2017. PMID: 28122568 Free PMC article.
References
-
- Jarausch KH, Ullrich KJ. Studies on the problem of urine concentration and dilution; distribution of electrolytes (sodium, potassium, calcium, magnesium, anorganic phosphate), urea amino acids and exogenous creatinine in the cortex and medulla of dog kidney in various diuretic conditions. Pflugers Arch 262: 537–550, 1956 - PubMed
-
- Knepper MA. Urea transport in isolated thick ascending limbs and collecting ducts from rats. Am J Physiol Renal Fluid Electrolyte Physiol 245: F634–F639, 1983 - PubMed
-
- Knepper MA. Urea transport in nephron segments from medullary rays of rabbits. Am J Physiol Renal Fluid Electrolyte Physiol 244: F622–F627, 1983 - PubMed
-
- Knepper MA, Chou CL, Layton HE. How is urine concentrated by the renal inner medulla? Contrib Nephrol 102: 144–160, 1993 - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources