Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2011 Sep 20:2:30.
doi: 10.3389/fendo.2011.00030. eCollection 2011.

ERK, Akt, and STAT5 are Differentially Activated by the Two Growth Hormone Receptor Subtypes of a Teleost Fish (Oncorhynchus Mykiss)

Affiliations

ERK, Akt, and STAT5 are Differentially Activated by the Two Growth Hormone Receptor Subtypes of a Teleost Fish (Oncorhynchus Mykiss)

Jeffrey D Kittilson et al. Front Endocrinol (Lausanne). .

Abstract

Previously, we found that the teleost fish, rainbow trout, possesses two growth hormone receptor (GHR) subtypes that display distinct ligand-binding and agonist-induced regulation features. In this study, we used Chinese hamster ovary-K1 cells stably transfected individually with the two trout GHR subtypes, GHR1 and GHR2, to elucidate receptor-effector pathway linkages. Growth hormone (GH) stimulated rapid (5-10 min) phosphorylation of ERK, Akt, JAk2, and STAT5 in both GHR1- and GHR2-expressing cells; however; STAT5 was activated to a greater extent through GHR1 than through GHR2, whereas ERK and Akt were activated to a greater through GHR2 than through GHR1. Although blockade of the ERK pathway had no effect on the activation of Akt, inhibition of PI3K-Akt partially prevented activation of ERK, suggesting cross-talk between the ERK and PI3K-Akt pathways. JAK2 inhibition completely blocked activation of ERK, Akt, and STAT5, suggesting that all of these pathways link to GHR1 and GHR2 via JAK2. These findings establish important receptor-effector pathway linkages and suggest that the GHR subtypes of teleost fish may be functionally distinct.

Keywords: LY294002; U0126; growth hormone; signal transduction.

PubMed Disclaimer

Figures

Figure 1
Figure 1
Growth hormone (GH) activates multiple signal pathways via rainbow trout GH receptors (GHR) transfected in Chinese hamster ovary (CHO)-K1 cells. CHO-K1 cells were stably transfected with cDNA encoding rainbow trout GHR1 and GHR2. Cells were incubated with 100 ng/ml salmonid GH for various times; after which, the cells were collected and lysed. Lysates were separated by SDS-PAGE followed by Western immunoblotting using phospho-specific (pERK 1/2, pAkt, pJAK2, pSTAT5) and total (tERK 1/2; tAkt, tJAK2, tSTAT5) antibodies.
Figure 2
Figure 2
Growth hormone receptors (GHR) subtypes differentially activate (A) ERK, (B) Akt, and (C) STAT5. CHO-K1 cells were stably transfected with cDNA encoding rainbow trout GHR1 and GHR2. Cells were incubated with various concentrations of salmonid GH for 10 min (control is 0 ng/ml); after which time, the cells were collected and lysed. Lysates were separated by SDS-PAGE followed by Western immunoblotting using phospho-specific (pERK 1/2, pAkt, pJAK2, pSTAT5) and total (tERK 1/2; tAkt, tJAK2, tSTAT5) antibodies. Data are expressed as percentage of control and are presented as means ± SEM (n = 8) of blots quantified with a digital imaging system; * designates groups that are significantly different from each other (P < 0.05).
Figure 3
Figure 3
Effects of pathway blockade on growth hormone-induced activation of (A) ERK, (B) Akt, and (C) STAT5. CHO-K1 cells were stably transfected with cDNA encoding rainbow trout GHR1 and GHR2. Transfected cells were pretreated with or without specific inhibitors [10 μM of the MEK inhibitor, U0126; 20 μM of the PI3K inhibitor, LY294002 (LY); 25 μM of the Akt inhibitor, 1L6-hydroxyymethyl-chiro-inositol-2-(R)-2-O-methyl-3-O-octadecyl-sn-glycerocarbonate (Carb); 200 μM of the STAT5 inhibitor, N′-((4-oxo-4H-chroen-3-yl)methylene)nicotinohydrazide (Nico); and 50 μM of the JAK2 inhibitor, 1,2,3,4,5,6-hexabromocyclohexane (Hex)] for 2 h, then treated with or without 100 ng/ml growth hormone (GH) for 10 min (control is 0 ng/ml GH); after which time, the cells were collected and lysed. Cell lysates were separated by SDS-PAGE followed by Western immunoblotting using phospho-specific (pERK1/2, pAkt, or pSTAT) and total (tERK1/2, tAkt, or tSTAT) antibodies. Data are expressed as percentage of control and are presented as means ± SEM (n = 8). For a given GHR subtype, groups with different letters are significantly different from each other (P < 0.05); * designates a significant difference (P < 0.05) between subtypes within a given treatment.
Figure 4
Figure 4
Model of differential activation of signaling pathways by growth hormone receptor (GHR) subtypes. JAK2 activation is essential for propagation of signaling from both GHR1 and GHR2 to the ERK, PI3K/Akt, and STAT5 pathways (details of pathway elements are omitted for simplicity). Cross-talk occurs between the ERK and PI3K/Akt pathways, possibly through Akt activation of c-Raf in the ERK pathway.

References

    1. Argetsinger L. S., Carter-Su C. (1996). Mechanism of signaling by growth hormone receptor. Physiol. Rev. 76, 1089–1107 - PubMed
    1. Bjornsson B. T., Johansson V., Benedet S., Einarsdottir I. E., Hildahl J., Agustsson T., Jonsson E. (2004). Growth hormone endocrinology of salmonids: regulatory mechanisms and mode of action. Fish Physiol. Biochem. 27, 227–24210.1023/B:FISH.0000032728.91152.10 - DOI
    1. Butler A. A., LeRoith D. L. (2001). Control of growth by the somatotropic axis: growth hormone and the insulin-like growth factors have related and independent roles. Ann. Rev. Physiol. 63, 141–16410.1146/annurev.physiol.63.1.141 - DOI - PubMed
    1. Carter-Su C., Rui L., Herrington J. (2000). Role of the tyrosine kinase JAK2 in signal transduction by growth hormone. Pediatr. Nephhrol. 14, 550–55710.1007/s004670000366 - DOI - PubMed
    1. Charland S., Boucher M. J., Houde M., Rivard N. (2001). Somatostatin inhibits Akt phosphorylation and cell cycle entry, but not p42/p44 mitogen-activated protein (MAP) kinase activation in normal and tumoral pancreatic acinar cells. Endocrinology 142, 121–12810.1210/en.142.1.121 - DOI - PubMed

LinkOut - more resources