Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2012 Jun 1;17(6):2122-39.
doi: 10.2741/4041.

Mechanistic insight into Type I restriction endonucleases

Affiliations
Free article
Review

Mechanistic insight into Type I restriction endonucleases

James Youell et al. Front Biosci (Landmark Ed). .
Free article

Abstract

Restriction and modification are two opposing activities that are used to protect bacteria from cellular invasion by DNA (e.g. bacteriophage infection). Restriction activity involves cleavage of the DNA; while modification activity is the mechanism used to "mark" host DNA and involves DNA methylation. The study of Type I restriction enzymes has often been seen as an esoteric exercise and this reflects some of their more unusual properties - non-stoichiometric (non-catalytic) cleavage of the DNA substrate, random cleavage of DNA, a massive ATPase activity, and the ability to both cleave DNA and methylate DNA. Yet these enzymes have been found in many bacteria and are very efficient as a means of protecting bacteria against bacteriophage infection, indicating they are successful enzymes. In this review, we summarise recent work on the mechanisms of action, describe switching of function and review their mechanism of action. We also discuss structural rearrangements and cellular localisation, which provide powerful mechanisms for controlling the enzyme activity. Finally, we speculate as to their involvement in recombination and discuss their relationship to helicase enzymes.

PubMed Disclaimer

MeSH terms

Substances

LinkOut - more resources