Drug treatment of Duchenne muscular dystrophy: available evidence and perspectives
- PMID: 22655510
- PMCID: PMC3440798
Drug treatment of Duchenne muscular dystrophy: available evidence and perspectives
Abstract
Duchenne muscular dystrophy (DMD) is a disease linked to the X-chromosome which affects 1 in 3,600-6,000 newborn males. It is manifested by the absence of the dystrophin protein in muscle fibres, which causes progressive damage leading to death in the third decade of life. The only medication so far shown to be effective in delaying the progression of this illness are corticosteroids, which have been shown to increase muscle strength in randomised controlled studies; long-term studies have demonstrated that they prolong walking time and retard the progression of respiratory dysfunction, dilated cardiomyopathy and scoliosis. Several potential drugs are now being investigated. Genetic therapy, involving the insertion of a dystrophin gene through a vector, has proven effective in animals but not humans. Currently under clinical study is Ataluren, a molecule that binds with ribosomes and may allow the insertion of an aminoacid in the premature termination codon, and exon-skipping, which binds with RNA and excludes specific sites of RNA splicing, producing a dystrophin that is smaller but functional. There are also studies attempting to modulate other muscular proteins, such as myostatin and utrophin, to reduce symptoms. This paper does not address cardiomyopathy treatment in DMD patients.
References
-
- Poysky J. Behavior patterns in Duchenne muscular dystrophy: report on the Parent Project Muscular Dystrophy behavior workshop 8-9 of December 2006, Philadelphia, USA. Neuromuscul Disord. 2007;17:986–994. - PubMed
-
- Bushby K, Finkel R, Birnkrant DJ, et al. Diagnosis and management of Duchenne muscular dystrophy, part 1: diagnosis, and pharmacological and psychosocial management. Lancet Neurol. 2010;9:77–93. - PubMed
-
- O'Brien KF, Kunkel LM. Dystrophin and muscular dystrophy: past, present, and future. Mol Genet Metab. 2001;74:75–88. - PubMed
-
- Muntoni F, Torelli S, Ferlini A, et al. Dystrophin and mutations: one gene, several proteins, multiple phenotypes. Lancet Neurol. 2003;2:731–740. - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Medical