Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2012 Aug;17(8):458-67.
doi: 10.1016/j.tplants.2012.04.006. Epub 2012 May 31.

Uptake, allocation and signaling of nitrate

Affiliations
Review

Uptake, allocation and signaling of nitrate

Ya-Yun Wang et al. Trends Plant Sci. 2012 Aug.

Erratum in

  • Trends Plant Sci. 2012 Oct;17(10):624

Abstract

Plants need to acquire nitrogen (N) efficiently from the soil for growth. Nitrate is one of the major N sources for higher plants. Therefore, nitrate uptake and allocation are key factors in efficient N utilization. Membrane-bound transporters are required for nitrate uptake from the soil and for the inter- and intracellular movement of nitrate inside the plants. Four gene families, nitrate transporter 1/peptide transporter (NRT1/PTR), NRT2, chloride channel (CLC), and slow anion channel-associated 1 homolog 3 (SLAC1/SLAH), are involved in nitrate uptake, allocation, and storage in higher plants. Recent studies of these transporters or channels have provided new insights into the molecular mechanisms of nitrate uptake and allocation. Interestingly, several of these transporters also play versatile roles in nitrate sensing, plant development, pathogen defense, and/or stress response.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources