Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2012 May;34(5):526-32.
doi: 10.3724/sp.j.1005.2012.00526.

[Research progress on influenza antiviral small RNAs]

[Article in Chinese]
Affiliations
Review

[Research progress on influenza antiviral small RNAs]

[Article in Chinese]
Wei-Hao Zheng et al. Yi Chuan. 2012 May.

Abstract

Worldwide influenza caused by influenza virus is a respiratory disease which threats the public health by seasonal epidemics or global influenza outbreak. Vaccines and drugs are current therapies, but there are many restricted factors such as neurotoxicity, side effects of gastrointestinal, and drug resistance. New technologies, particularly RNAi mediated by small RNAs, has become a potential and robust method in influenza antiviral research for its high efficiency, specific, and speedy. Following the spread and epidemic of the influenza virus, application of small RNAs into influenza antiviral research has been reported increasingly. The small RNAs, PA-2087, NP-1496, and M-950, which targets PA, NP, and M2 genes, respectively, are the most effective anti-influenza siRNAs up to now. siRNA of targeting conservative region of different influenza viral genes has broader effect on virus inhibition. The combination of siRNAs of targeting different genes can achieve better virus inhibition. In this review, we mainly described the progress of siRNAs and miRNAs for anti-influenza virus, and the prospects and hurdles of influenza RNAi therapy as well.

PubMed Disclaimer

Publication types

LinkOut - more resources