Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1990 Dec;31(12):2546-50.

High-speed photography of Er: YAG laser ablation in fluid. Implication for laser vitreous surgery

Affiliations
  • PMID: 2265992

High-speed photography of Er: YAG laser ablation in fluid. Implication for laser vitreous surgery

C P Lin et al. Invest Ophthalmol Vis Sci. 1990 Dec.

Abstract

The mechanism of Er:YAG laser-induced long-range damage in intraocular surgery was investigated using high-speed photography. A short pulse of 2.94-microns radiation delivered by an optical fiber into an aqueous medium causes rapid localized heating and vaporization and creates a bubble at the tip of the fiber. The size of the bubble depends on the pulse energy and is about 1 mm at 1 mJ. The shape of the bubble has multiple lobes, which can be attributed to the spiky output of the laser pulse. The expanding bubble can cause thermal and mechanical damage to tissues. In addition, laser spikes propagating through the bubble can strike and damage tissue on the distal side of the bubble. In both mechanisms the damage zone approximates the bubble size and can be greater than 1 mm, ie, 1000 times the steady-state absorption length of water at 2.94 microns. The authors discuss ways to reduce the damage zone by bubble confinement.

PubMed Disclaimer

Publication types

LinkOut - more resources