Leptospirosis in American Samoa--estimating and mapping risk using environmental data
- PMID: 22666516
- PMCID: PMC3362644
- DOI: 10.1371/journal.pntd.0001669
Leptospirosis in American Samoa--estimating and mapping risk using environmental data
Abstract
Background: The recent emergence of leptospirosis has been linked to many environmental drivers of disease transmission. Accurate epidemiological data are lacking because of under-diagnosis, poor laboratory capacity, and inadequate surveillance. Predictive risk maps have been produced for many diseases to identify high-risk areas for infection and guide allocation of public health resources, and are particularly useful where disease surveillance is poor. To date, no predictive risk maps have been produced for leptospirosis. The objectives of this study were to estimate leptospirosis seroprevalence at geographic locations based on environmental factors, produce a predictive disease risk map for American Samoa, and assess the accuracy of the maps in predicting infection risk.
Methodology and principal findings: Data on seroprevalence and risk factors were obtained from a recent study of leptospirosis in American Samoa. Data on environmental variables were obtained from local sources, and included rainfall, altitude, vegetation, soil type, and location of backyard piggeries. Multivariable logistic regression was performed to investigate associations between seropositivity and risk factors. Using the multivariable models, seroprevalence at geographic locations was predicted based on environmental variables. Goodness of fit of models was measured using area under the curve of the receiver operating characteristic, and the percentage of cases correctly classified as seropositive. Environmental predictors of seroprevalence included living below median altitude of a village, in agricultural areas, on clay soil, and higher density of piggeries above the house. Models had acceptable goodness of fit, and correctly classified ∼84% of cases.
Conclusions and significance: Environmental variables could be used to identify high-risk areas for leptospirosis. Environmental monitoring could potentially be a valuable strategy for leptospirosis control, and allow us to move from disease surveillance to environmental health hazard surveillance as a more cost-effective tool for directing public health interventions.
Conflict of interest statement
The authors have declared that no competing interests exist.
Figures








References
-
- World Health Organization. Human Leptospirosis: Guidance for Diagnosis, Surveillance and Control. 2003. Available: http://www.who.int/zoonoses/resources/Leptospirosis/en/. Accessed 13 March 2012.
-
- WHO. Leptospirosis: an emerging public health problem. Wkly Epidemiol Rec. 2011;86:45–50. - PubMed
-
- Bharti AR, Nally JE, Ricaldi JN, Matthias MA, Diaz MM, et al. Leptospirosis: a zoonotic disease of global importance. Lancet Infect Dis. 2003;3:757–771. - PubMed
-
- Lau CL, Smythe LD, Craig SB, Weinstein P. Climate change, flooding, urbanisation and leptospirosis: fuelling the fire? Trans R Soc Trop Med Hyg. 2010;104:631–638. - PubMed
-
- Hartskeerl RA, Collares-Pereira M, Ellis WA. Emergence, control and re-emerging leptospirosis: dynamics of infection in the changing world. Clin Microbiol Infect. 2011;17:494–501. - PubMed
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources