Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2013 Jun;54(2):337-49.
doi: 10.1007/s12033-012-9569-9.

Cold response of dedifferentiated barley cells at the gene expression, hormone composition, and freezing tolerance levels: studies on callus cultures

Affiliations

Cold response of dedifferentiated barley cells at the gene expression, hormone composition, and freezing tolerance levels: studies on callus cultures

Ildikó Vashegyi et al. Mol Biotechnol. 2013 Jun.

Abstract

In this study, data is presented how dark-grown, embryogenic barley callus cells respond to cold without any light-dependent, chloroplast-related mechanism, independently of the systemic signals. The expression of HvCBF9, HvCBF14, and HvCOR14b genes, members of one of the most important cold-inducible regulatory system, was measured by real-time PCR. Characteristic of the cold response was similar in the crowns of seedlings and in dark-grown callus cultures, however, gene expression levels were lower in calli. Endogenous concentration of auxins, abscisic acid, and salicylic acid did not change, but phaseic acid and neophaseic acid showed robust accumulation after cold acclimation. Freezing tolerance of the cultures was also higher after 7 days of cold-hardening. The results suggest the presence of a basal, light-independent, cold-responsive activation of the CBF-COR14b pathway in barley cultures. The effects of Dicamba, the exogenous auxin analog used for maintaining tissue cultures were also studied. Dicamba seems to be a general enhancer of the gene expression and physiological responses to cold stress, but has no specific effect on the activation. Our data along with previous findings show that this system might be a suitable model for studying certain basic cellular mechanisms involved in the cold acclimation process in cereals.

PubMed Disclaimer

Similar articles

Cited by

References

    1. Annu Rev Plant Physiol Plant Mol Biol. 1999 Jun;50:571-599 - PubMed
    1. J Exp Bot. 2003 Jun;54(387):1565-75 - PubMed
    1. Plant Cell. 1993 Oct;5(10):1411-1423 - PubMed
    1. Plant Physiol. 2001 Nov;127(3):910-7 - PubMed
    1. Theor Appl Genet. 1996 Oct;93(5-6):975-81 - PubMed

Publication types

LinkOut - more resources