Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2013 Feb;75(2):313-22.
doi: 10.1111/j.1365-2125.2012.04351.x.

Is the cardiovascular system a therapeutic target for cannabidiol?

Affiliations
Review

Is the cardiovascular system a therapeutic target for cannabidiol?

Christopher P Stanley et al. Br J Clin Pharmacol. 2013 Feb.

Abstract

Cannabidiol (CBD) has beneficial effects in disorders as wide ranging as diabetes, Huntington's disease, cancer and colitis. Accumulating evidence now also suggests that CBD is beneficial in the cardiovascular system. CBD has direct actions on isolated arteries, causing both acute and time-dependent vasorelaxation. In vitro incubation with CBD enhances the vasorelaxant responses in animal models of impaired endothelium-dependent vasorelaxation. CBD protects against the vascular damage caused by a high glucose environment, inflammation or the induction of type 2 diabetes in animal models and reduces the vascular hyperpermeability associated with such environments. A common theme throughout these studies is the anti-inflammatory and anti-oxidant effect of CBD. In the heart, in vivo CBD treatment protects against ischaemia-reperfusion damage and against cardiomyopathy associated with diabetes. Similarly, in a different model of ischaemia-reperfusion, CBD has been shown to reduce infarct size and increase blood flow in animal models of stroke, sensitive to 5HT(1A) receptor antagonism. Although acute or chronic CBD treatment seems to have little effect on haemodynamics, CBD reduces the cardiovascular response to models of stress, applied either systemically or intracranially, inhibited by a 5HT(1A) receptor antagonist. In blood, CBD influences the survival and death of white blood cells, white blood cell migration and platelet aggregation. Taken together, these preclinical data appear to support a positive role for CBD treatment in the heart, and in peripheral and cerebral vasculature. However, further work is required to strengthen this hypothesis, establish mechanisms of action and whether similar responses to CBD would be observed in humans.

PubMed Disclaimer

Figures

Figure 1
Figure 1
Direct vascular effects of CBD measured in isolated arteries. TRPV, transient receptor potential vanilloid; NO, nitric oxide; CB1, cannabinoid receptor 1; PPARγ, peroxisome proliferator activated receptor gamma; SOD, superoxide dismutase

References

    1. Pertwee RG. Cannabinoid pharmacology: the first 66 years. Br J Pharmacol. 2006;147:S163–S71. - PMC - PubMed
    1. Pertwee RG. Pharmacological actions of cannabinoidsCannabinoids. 2005. pp. 1–51. - PubMed
    1. Razdan RK. Structure-activity relationship of classical cannabinoids. In: Reggio PH, editor. The Cannabinoid Receptors. New York: Humana Press; 2009. pp. 3–19.
    1. Pertwee RG. The diverse CB1 and CB2 receptor pharmacology of three plant cannabinoids: Δ9-tetrahydrocannabinol, cannabidiol and Δ9-tetrahydrocannabivarin. Br J Pharmacol. 2008;153:199–215. - PMC - PubMed
    1. O'Sullivan SE, Sun Y, Bennett AJ, Randall MD, Kendall DA. Time-dependent vascular actions of cannabidiol in the rat aorta. Eur J Pharmacol. 2009;612:61–8. - PubMed

MeSH terms