Valley-selective circular dichroism of monolayer molybdenum disulphide
- PMID: 22673914
- PMCID: PMC3621397
- DOI: 10.1038/ncomms1882
Valley-selective circular dichroism of monolayer molybdenum disulphide
Abstract
A two-dimensional honeycomb lattice harbours a pair of inequivalent valleys in the k-space electronic structure, in the vicinities of the vertices of a hexagonal Brillouin zone, K(±). It is particularly appealing to exploit this emergent degree of freedom of charge carriers, in what is termed 'valleytronics'. The physics of valleys mimics that of spin, and will make possible devices, analogous to spintronics, such as valley filter and valve, and optoelectronic Hall devices, all very promising for next-generation electronics. The key challenge lies with achieving valley polarization, of which a convincing demonstration in a two-dimensional honeycomb structure remains evasive. Here we show, using first principles calculations, that monolayer molybdenum disulphide is an ideal material for valleytronics, for which valley polarization is achievable via valley-selective circular dichroism arising from its unique symmetry. We also provide experimental evidence by measuring the circularly polarized photoluminescence on monolayer molybdenum disulphide, which shows up to 50% polarization.
Figures




Similar articles
-
Valley Pseudospin with a Widely Tunable Bandgap in Doped Honeycomb BN Monolayer.Nano Lett. 2017 Mar 8;17(3):2079-2087. doi: 10.1021/acs.nanolett.7b00271. Epub 2017 Feb 22. Nano Lett. 2017. PMID: 28171729
-
Dichroic spin-valley photocurrent in monolayer molybdenum disulphide.Nat Commun. 2015 Jul 2;6:7636. doi: 10.1038/ncomms8636. Nat Commun. 2015. PMID: 26134143 Free PMC article.
-
Valley polarization in MoS2 monolayers by optical pumping.Nat Nanotechnol. 2012 Aug;7(8):490-3. doi: 10.1038/nnano.2012.95. Epub 2012 Jun 17. Nat Nanotechnol. 2012. PMID: 22706701
-
Room temperature spontaneous valley polarization in two-dimensional FeClBr monolayer.Nanoscale. 2021 Sep 17;13(35):14807-14813. doi: 10.1039/d1nr04063d. Nanoscale. 2021. PMID: 34533179
-
Valleytronics in two-dimensional materials with line defect.Nanotechnology. 2022 Mar 4;33(21). doi: 10.1088/1361-6528/ac50f2. Nanotechnology. 2022. PMID: 35105824 Review.
Cited by
-
Electronics and optoelectronics of two-dimensional transition metal dichalcogenides.Nat Nanotechnol. 2012 Nov;7(11):699-712. doi: 10.1038/nnano.2012.193. Nat Nanotechnol. 2012. PMID: 23132225 Review.
-
Exploring atomic defects in molybdenum disulphide monolayers.Nat Commun. 2015 Feb 19;6:6293. doi: 10.1038/ncomms7293. Nat Commun. 2015. PMID: 25695374 Free PMC article.
-
Giant valley splitting in monolayer WS2 by magnetic proximity effect.Nat Commun. 2019 Sep 13;10(1):4163. doi: 10.1038/s41467-019-11966-4. Nat Commun. 2019. PMID: 31519871 Free PMC article.
-
Revealing the biexciton and trion-exciton complexes in BN encapsulated WSe2.Nat Commun. 2018 Sep 13;9(1):3719. doi: 10.1038/s41467-018-05863-5. Nat Commun. 2018. PMID: 30213927 Free PMC article.
-
Theory of Excitons in Atomically Thin Semiconductors: Tight-Binding Approach.Nanomaterials (Basel). 2022 May 6;12(9):1582. doi: 10.3390/nano12091582. Nanomaterials (Basel). 2022. PMID: 35564291 Free PMC article. Review.
References
-
- Rycerz A., Tworzydlo J. & Beenakker C. W. J. Valley filter and valley valve in graphene. Nat. Phys. 3, 172–175 (2007).
-
- Akhmerov A. R. & Beenakker C. W. J. Detection of valley polarization in graphene by a superconducting contact. Phys. Rev. Lett. 98, 157003 (2007). - PubMed
-
- Xiao D., Yao W. & Niu Q. Valley-contrasting physics in graphene: Magnetic moment and topological transport. Phys. Rev. Lett. 99, 236809 (2007). - PubMed
-
- Yao W., Xiao D. & Niu Q. Valley-dependent optoelectronics from inversion symmetry breaking. Phys. Rev. B 77, 235406 (2008).
-
- Gunawan O. et al.. Valley susceptibility of an interacting two-dimensional electron system. Phys. Rev. Lett. 97, 186404 (2006). - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources