Re-engineering electrochemical biosensors to narrow or extend their useful dynamic range
- PMID: 22674785
- PMCID: PMC3482547
- DOI: 10.1002/anie.201202204
Re-engineering electrochemical biosensors to narrow or extend their useful dynamic range
Abstract
Here we demonstrate two convenient methods to extend and narrow the useful dynamic range of a model electrochemical DNA sensor. We did so by combining DNA probes of different target affinities but with similar specificity on the same electrode. We were able to achieve an extended dynamic response spanning 3 orders of magnitude in target concentration. Using a different strategy we have also narrowed the useful dynamic range of an E-DNA sensor to only an 8-fold range of target concentrations.
Figures





Similar articles
-
Label-free probes using DNA-templated silver nanoclusters as versatile reporters.Biosens Bioelectron. 2020 Feb 15;150:111926. doi: 10.1016/j.bios.2019.111926. Epub 2019 Nov 27. Biosens Bioelectron. 2020. PMID: 31929081 Review.
-
Carbon nanostructures as immobilization platform for DNA: A review on current progress in electrochemical DNA sensors.Biosens Bioelectron. 2017 Nov 15;97:226-237. doi: 10.1016/j.bios.2017.06.001. Biosens Bioelectron. 2017. PMID: 28601788 Review.
-
Electrochemical monitoring of the interaction of UO2(2+) with immobilized DNA.Bioelectrochemistry. 2013 Aug;92:27-31. doi: 10.1016/j.bioelechem.2013.02.002. Epub 2013 Mar 1. Bioelectrochemistry. 2013. PMID: 23587475
-
Electrochemical biosensor for detection of MON89788 gene fragments with spiny trisoctahedron gold nanocrystal and target DNA recycling amplification.Mikrochim Acta. 2020 Aug 10;187(9):494. doi: 10.1007/s00604-020-04467-5. Mikrochim Acta. 2020. PMID: 32778963
-
A base-stacking-driven ratiometric electrochemical biosensor using dsDNA-mediated MB-and-cholesterol co-immobilization: A model of hydrophobic versatile platform for biosensing.Biosens Bioelectron. 2025 Sep 15;284:117540. doi: 10.1016/j.bios.2025.117540. Epub 2025 May 2. Biosens Bioelectron. 2025. PMID: 40347597
Cited by
-
Using Nature's "Tricks" To Rationally Tune the Binding Properties of Biomolecular Receptors.Acc Chem Res. 2016 Sep 20;49(9):1884-92. doi: 10.1021/acs.accounts.6b00276. Epub 2016 Aug 26. Acc Chem Res. 2016. PMID: 27564548 Free PMC article. Review.
-
DNA-Based Biosensors for the Biochemical Analysis: A Review.Biosensors (Basel). 2022 Mar 20;12(3):183. doi: 10.3390/bios12030183. Biosensors (Basel). 2022. PMID: 35323453 Free PMC article. Review.
-
Design of Flow Systems for Improved Networking and Reduced Noise in Biomolecular Signal Processing in Biocomputing and Biosensing Applications.Sensors (Basel). 2016 Jul 5;16(7):1042. doi: 10.3390/s16071042. Sensors (Basel). 2016. PMID: 27399702 Free PMC article.
-
On the Rational Design of Cooperative Receptors.Annu Rev Biophys. 2023 May 9;52:319-337. doi: 10.1146/annurev-biophys-091222-082247. Epub 2023 Feb 3. Annu Rev Biophys. 2023. PMID: 36737603 Free PMC article. Review.
-
Folding-upon-binding and signal-on electrochemical DNA sensor with high affinity and specificity.Anal Chem. 2014 Sep 16;86(18):9013-9. doi: 10.1021/ac501418g. Epub 2014 Jul 3. Anal Chem. 2014. PMID: 24947124 Free PMC article.
References
-
- Bullen RA, Arnot TC, Lakeman JB, Walsh FC. Biosens Bioelectron. 2006;21:2015–2045. - PubMed
-
- Privman V, Pedrosa V, Melnikov D, Pita M, Simonian A, Katz E. Biosens Bioelectron. 2009;25:695–701. - PubMed
- Wang J, Katz E. Isr J Chem. 2011;51:141–150.
-
- Koshland DE. The molecular basis for enzyme regulation. Vol. 1. Academic Press; New York: 1970.
- Goldbeter A, Koshland DE. Proc Natl Acad Sci USA. 1981;78:6840–6844. - PMC - PubMed
- Koshland DE, Goldbeter A, Stock JB. Science. 1982;217:220–225. - PubMed
- Ferrell JE. Trends Biochem Sci. 1996;21:460–466. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources