Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2012 Sep 1;21(17):3871-82.
doi: 10.1093/hmg/dds215. Epub 2012 Jun 7.

Amyloid precursor protein (APP) contributes to pathology in the SOD1(G93A) mouse model of amyotrophic lateral sclerosis

Affiliations

Amyloid precursor protein (APP) contributes to pathology in the SOD1(G93A) mouse model of amyotrophic lateral sclerosis

J Barney Bryson et al. Hum Mol Genet. .

Abstract

In amyotrophic lateral sclerosis (ALS), the progressive loss of motor neurons is accompanied by extensive muscle denervation, resulting in paralysis and ultimately death. Upregulation of amyloid beta (A4) precursor protein (APP) in muscle fibres coincides with symptom onset in both sporadic ALS patients and the SOD1(G93A) mouse model of familial ALS. We have further characterized this response in SOD1(G93A) mice and also revealed elevated levels of β-amyloid (Aβ) peptides in the SOD1(G93A) spinal cord, which were predominantly localized within motor neurons and their surrounding glial cells. We therefore examined the effect of genetic ablation of APP on disease progression in SOD1(G93A) mice, which significantly improved multiple disease parameters, including innervation, motor function, muscle contractile characteristics, motor unit and motor neuron survival. These results therefore strongly suggest that APP actively contributes to SOD1(G93A)-mediated pathology. Together with observations from ALS cases, this study indicates that APP may contribute to human ALS pathology.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms