Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2012;6(6):e1681.
doi: 10.1371/journal.pntd.0001681. Epub 2012 Jun 5.

Altered circulating levels of matrix metalloproteinases and inhibitors associated with elevated type 2 cytokines in lymphatic filarial disease

Affiliations

Altered circulating levels of matrix metalloproteinases and inhibitors associated with elevated type 2 cytokines in lymphatic filarial disease

Rajamanickam Anuradha et al. PLoS Negl Trop Dis. 2012.

Abstract

Background: Infection with Wuchereria bancrofti can cause severe disease characterized by subcutaneous fibrosis and extracellular matrix remodeling. Matrix metalloproteinases (MMPs) are a family of enzymes governing extracellular remodeling by regulating cellular homeostasis, inflammation, and tissue reorganization, while tissue-inhibitors of metalloproteinases (TIMPs) are endogenous regulators of MMPs. Homeostatic as well as inflammation-induced balance between MMPs and TIMPs is considered critical in mediating tissue pathology.

Methods: To elucidate the role of MMPs and TIMPs in filarial pathology, we compared the plasma levels of a panel of MMPs, TIMPs, other pro-fibrotic factors, and cytokines in individuals with chronic filarial pathology with (CP Ag+) or without (CP Ag-) active infection to those with clinically asymptomatic infections (INF) and in those without infection (endemic normal [EN]). Markers of pathogenesis were delineated based on comparisons between the two actively infected groups (CP Ag+ compared to INF) and those without active infection (CP Ag- compared to EN).

Results and conclusion: Our data reveal that an increase in circulating levels of MMPs and TIMPs is characteristic of the filarial disease process per se and not of active infection; however, filarial disease with active infection is specifically associated with increased ratios of MMP1/TIMP4 and MMP8/TIMP4 as well as with pro-fibrotic cytokines (IL-5, IL-13 and TGF-β). Our data therefore suggest that while filarial lymphatic disease is characterized by a non-specific increase in plasma MMPs and TIMPs, the balance between MMPs and TIMPs is an important factor in regulating tissue pathology during active infection.

PubMed Disclaimer

Conflict of interest statement

The authors have declared that no competing interests exist.

Figures

Figure 1
Figure 1. Filarial lymphedema is associated with elevated levels of MMPs.
(A) Plasma levels of MMP-1, -7, -8, and -9 from filarial lymphedema individuals with active infection [CP Ag+] (n = 28) and asymptomatic infected [INF] (n = 74) individuals were measured by ELISA. (B) Plasma levels of MMP-1, -7, -8 and -9 from filarial lymphedema individuals without active infection [CP Ag−] (n = 77) and endemic normal [EN] (n = 73) individuals were measured by ELISA. P values were calculated using the Mann-Whitney test.
Figure 2
Figure 2. Filarial lymphedema is associated with elevated levels of TIMP-1 and 2.
(A) Plasma levels of TIMP-1, -2, -3, and -4 from filarial lymphedema individuals with active infection [CP Ag+] (n = 28) and asymptomatic infected [INF] (n = 66–76) individuals were measured by ELISA. (B) Plasma levels of TIMP-1, -2, -3, and -4 from filarial lymphedema individuals without active infection [CP Ag−] (n = 66–76) and endemic normal [EN] (n = 73) individuals were measured by ELISA. P values were calculated using the Mann-Whitney test.
Figure 3
Figure 3. Altered MMP to TIMP ratios in filarial infection and lymphedema.
(A) Ratio of circulating levels of MMP-1/TIMP-4 and MMP-8/TIMP-4 from filarial lymphedema individuals with active infection [CP Ag+] and asymptomatic infected [INF] individuals as well as from filarial lymphedema individuals without active infection [CP Ag−] and endemic normal [EN] individuals are shown. (B) Ratio of circulating levels of MMP-1/TIMP-2, MMP-7/TIMP-1, and MMP-7/TIMP-2 from filarial lymphedema individuals with active infection [CP Ag+] and asymptomatic infected [INF] individuals as well as from filarial lymphedema individuals without active infection [CP Ag−] and endemic normal [EN] individuals are shown. P values were calculated using the Mann-Whitney test.
Figure 4
Figure 4. Filarial lymphedema is not associated with elevated levels of FGF-2 or PDGF-AA.
(A) Plasma levels of FGF-2 and PDGF-AA from filarial lymphedema individuals with active infection [CP Ag+] (n = 21–22) and asymptomatic infected [INF] (n = 22–39) individuals were measured by ELISA. (B) Plasma levels of FGF-2 and PDGF-AA from filarial lymphedema individuals without active infection [CP Ag−] (n = 22–38) and endemic normal [EN] (n = 21–33) individuals were measured by ELISA. P values were calculated using the Mann-Whitney test.
Figure 5
Figure 5. Circulating levels of pro-fibrotic cytokines in filarial lymphedema.
(A) Plasma levels of IL-5, IL-13, and TGF-β from filarial lymphedema individuals with active infection [CP Ag+] (n = 24) and asymptomatic infected [INF] (n = 90) individuals were measured by ELISA. (B) Plasma levels of IL-5, IL-13, and TGF-β from filarial lymphedema individuals without active infection [CP Ag−] (n = 70–91) and endemic normal [EN] (n = 68–80) individuals were measured by ELISA. P values were calculated using the Mann-Whitney test.
Figure 6
Figure 6. Correlation between MMP/TIMP ratios and Type 2 cytokines in filaria-infected individuals.
(A) MMP/TIMP ratios were correlated with the levels of IL-13 from individuals with active infection [CP Ag+ and INF (n = 102–114)]. (B) MMP/TIMP ratios were correlated with the levels of IL-5 from individuals with active infection [CP Ag+ and INF (n = 102–114)]. CP Ag+ individuals are shown in gray circles and INF in dark circles. P and r values were calculated using the Spearman rank correlation test.

Similar articles

Cited by

References

    1. Nutman TB, Kumaraswami V. Regulation of the immune response in lymphatic filariasis: perspectives on acute and chronic infection with Wuchereria bancrofti in South India. Parasite Immunol. 2001;23:389–399. - PubMed
    1. Pfarr KM, Debrah AY, Specht S, Hoerauf A. Filariasis and lymphoedema. Parasite Immunol. 2009;31:664–672. - PMC - PubMed
    1. Dreyer G, Noroes J, Figueredo-Silva J, Piessens WF. Pathogenesis of lymphatic disease in bancroftian filariasis: a clinical perspective. Parasitol Today. 2000;16:544–548. - PubMed
    1. Figueredo-Silva J, Noroes J, Cedenho A, Dreyer G. The histopathology of bancroftian filariasis revisited: the role of the adult worm in the lymphatic-vessel disease. Ann Trop Med Parasitol. 2002;96:531–541. - PubMed
    1. Taylor MJ. Wolbachia in the inflammatory pathogenesis of human filariasis. Ann N Y Acad Sci. 2003;990:444–449. - PubMed

Publication types

Substances