Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2012 Aug 15;53(4):710-20.
doi: 10.1016/j.freeradbiomed.2012.05.042. Epub 2012 Jun 7.

Carbon monoxide enhances the chilling tolerance of recalcitrant Baccaurea ramiflora seeds via nitric oxide-mediated glutathione homeostasis

Affiliations

Carbon monoxide enhances the chilling tolerance of recalcitrant Baccaurea ramiflora seeds via nitric oxide-mediated glutathione homeostasis

Xue-gui Bai et al. Free Radic Biol Med. .

Abstract

Both carbon monoxide (CO) and nitric oxide (NO) play fundamental roles in plant responses to environmental stress. Glutathione (GSH) homeostasis through the glutathione-ascorbate cycle regulates the cellular redox status and protects the plant from damage due to reactive oxygen species (ROS) or reactive nitrogen species (RNS). Most recalcitrant seeds are sensitive to chilling stress, but the roles of and cross talk among CO, NO, ROS, and GSH in recalcitrant seeds under low temperature are not well understood. Here, we report that the germination of recalcitrant Baccaurea ramiflora seeds shows sensitivity to chilling stress, but application of exogenous CO or NO markedly increased GSH accumulation, enhanced the activities of antioxidant enzymes involved in the glutathione-ascorbate cycle, decreased the content of H(2)O(2) and RNS, and improved the tolerance of seeds to low-temperature stress. Compared to orthodox seeds such as maize, only transient accumulation of CO and NO was induced and only a moderate increase in GSH was shown in the recalcitrant B. ramiflora seeds. Exogenous CO or NO treatment further increased the GSH accumulation and S-nitrosoglutathione reductase (GSNOR) activity in B. ramiflora seeds under chilling stress. In contrast, suppressing CO or NO generation, removing GSH, or blocking GSNOR activity resulted in increases in ROS and RNS and impaired the germination of CO- or NO-induced seeds under chilling stress. Based on these results, we propose that CO acts as a novel regulator to improve the tolerance of recalcitrant seeds to low temperatures through NO-mediated glutathione homeostasis.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources