Metabolic actions of angiotensin II and insulin: a microvascular endothelial balancing act
- PMID: 22684034
- PMCID: PMC3478427
- DOI: 10.1016/j.mce.2012.05.017
Metabolic actions of angiotensin II and insulin: a microvascular endothelial balancing act
Abstract
Metabolic actions of insulin to promote glucose disposal are augmented by nitric oxide (NO)-dependent increases in microvascular blood flow to skeletal muscle. The balance between NO-dependent vasodilator actions and endothelin-1-dependent vasoconstrictor actions of insulin is regulated by phosphatidylinositol 3-kinase-dependent (PI3K)--and mitogen-activated protein kinase (MAPK)-dependent signaling in vascular endothelium, respectively. Angiotensin II acting on AT₂ receptor increases capillary blood flow to increase insulin-mediated glucose disposal. In contrast, AT₁ receptor activation leads to reduced NO bioavailability, impaired insulin signaling, vasoconstriction, and insulin resistance. Insulin-resistant states are characterized by dysregulated local renin-angiotensin-aldosterone system (RAAS). Under insulin-resistant conditions, pathway-specific impairment in PI3K-dependent signaling may cause imbalance between production of NO and secretion of endothelin-1, leading to decreased blood flow, which worsens insulin resistance. Similarly, excess AT₁ receptor activity in the microvasculature may selectively impair vasodilation while simultaneously potentiating the vasoconstrictor actions of insulin. Therapeutic interventions that target pathway-selective impairment in insulin signaling and the imbalance in AT₁ and AT₂ receptor signaling in microvascular endothelium may simultaneously ameliorate endothelial dysfunction and insulin resistance. In the present review, we discuss molecular mechanisms in the endothelium underlying microvascular and metabolic actions of insulin and Angiotensin II, the mechanistic basis for microvascular endothelial dysfunction and insulin resistance in RAAS dysregulated clinical states, and the rationale for therapeutic strategies that restore the balance in vasodilator and constrictor actions of insulin and Angiotensin II in the microvasculature.
Keywords: Angiotensin II; Endothelial dysfunction; Insulin resistance; Nitric oxide.
Published by Elsevier Ireland Ltd.
Figures
References
-
- DeFronzo RA, Ferrannini E. Insulin resistance. A multifaceted syndrome responsible for NIDDM, obesity, hypertension, dyslipidemia, and atherosclerotic cardiovascular disease. Diabetes Care. 1991;14:173–94. - PubMed
-
- Baron AD, Clark MG. Role of blood flow in the regulation of muscle glucose uptake. Annu Rev Nutr. 1997;17:487–99. - PubMed
-
- Clark MG, Colquhoun EQ, Rattigan S, Dora KA, Eldershaw TP, Hall JL, Ye J. Vascular and endocrine control of muscle metabolism. Am J Physiol. 1995;268:E797–812. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical
Research Materials
