The action of capsaicin on primary afferent central terminals in the superficial dorsal horn of newborn mice
- PMID: 2268478
- DOI: 10.1679/aohc.53.455
The action of capsaicin on primary afferent central terminals in the superficial dorsal horn of newborn mice
Abstract
Capsaicin was injected subcutaneously (50 mg/kg) into 10 mice on days 2 or 3 after birth, and 12 h, 3 and 5 days later the distribution and structure of degenerated primary afferent central axons or terminals (C-terminals) in the lumbar spinal dorsal horn were examined by electron microscopy. Degenerated terminal axons with dense or lamellar bodies or higher electron density were conspicuous 12 h after treatment with capsaicin. Severely degenerated unmyelinated axons, including dense or lamellar bodies engulfed by microglial cells, were numerous in the most superficial (marginal) layer, but rarely seen in the substantia gelatinosa. Two types of primary afferent central terminals in the substantia gelatinosa showed various extents of degeneration: small dark C-terminals (CI-terminals) with densely packed agranular synaptic vesicles, and large light ones (CII-terminals) with less dense agranular synaptic vesicles and a few granular synaptic vesicles. Thus, many central axon terminals of dorsal root ganglion (DRG) neurons that are sensitive to capsaicin enter the marginal layer and substantia gelatinosa. Degenerated primary afferent central axons or terminals markedly decreased in the superficial dorsal horn 3 and 5 days after capsaicin treatment, still, there were many degenerating DRG neurons at this time as shown by our previous study. Previously we also reported that fewer slightly degenerating unmyelinated dorsal root axons and small DRG neurons appear at 12 h and larger DRG neurons degenerate later than smaller ones after treatment with capsaicin. As a result, the discovery of many severely degenerated terminal axons in the superficial dorsal horn soon after treatment supports the idea that capsaicin first acts on the central terminals and that this is followed by damage to larger DRG neurons.
Similar articles
-
Early morphological changes of primary afferent neurons and their processes in newborn mice after treatment with capsaicin.Exp Brain Res. 1994;101(2):203-15. doi: 10.1007/BF00228741. Exp Brain Res. 1994. PMID: 7843309
-
Central terminals of capsaicin-sensitive primary afferent make synaptic contacts with neuronal soma in the mouse substantia gelatinosa.Experientia. 1995 Jun 14;51(6):551-5. doi: 10.1007/BF02128741. Experientia. 1995. PMID: 7607294
-
FRAP-positive and capsaicin-sensitive terminals in the substantia gelatinosa of the mouse spinal trigeminal nucleus caudalis.Okajimas Folia Anat Jpn. 1999 May;76(1):33-40. doi: 10.2535/ofaj1936.76.1_33. Okajimas Folia Anat Jpn. 1999. PMID: 10409843
-
Changes in features of degenerating primary sensory neurons with time after capsaicin treatment.Acta Neuropathol. 1989;78(1):35-46. doi: 10.1007/BF00687400. Acta Neuropathol. 1989. PMID: 2735188
-
Neuroanatomical effects of capsaicin on the primary afferent neurons.Arch Histol Cytol. 2000 Jul;63(3):199-215. doi: 10.1679/aohc.63.199. Arch Histol Cytol. 2000. PMID: 10989932 Review.
Cited by
-
Early morphological changes of primary afferent neurons and their processes in newborn mice after treatment with capsaicin.Exp Brain Res. 1994;101(2):203-15. doi: 10.1007/BF00228741. Exp Brain Res. 1994. PMID: 7843309
-
Central terminals of capsaicin-sensitive primary afferent make synaptic contacts with neuronal soma in the mouse substantia gelatinosa.Experientia. 1995 Jun 14;51(6):551-5. doi: 10.1007/BF02128741. Experientia. 1995. PMID: 7607294
Publication types
MeSH terms
Substances
LinkOut - more resources
Research Materials