Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2012 Sep 1;46(13):4111-20.
doi: 10.1016/j.watres.2012.05.028. Epub 2012 May 23.

Polymer composite adsorbents using particles of molecularly imprinted polymers or aluminium oxide nanoparticles for treatment of arsenic contaminated waters

Affiliations

Polymer composite adsorbents using particles of molecularly imprinted polymers or aluminium oxide nanoparticles for treatment of arsenic contaminated waters

L Önnby et al. Water Res. .

Abstract

Removal of As(V) by adsorption from water solutions was studied using three different synthetic adsorbents. The adsorbents, (a) aluminium nanoparticles (Alu-NPs, <50 nm) incorporated in amine rich cryogels (Alu-cryo), (b) molecular imprinted polymers (<38 μm) in polyacrylamide cryogels (MIP-cryo) and (c) thiol functionalised cryogels (SH-cryo) were evaluated regarding material characteristics and arsenic removal in batch test and continuous mode. Results revealed that a composite design with particles incorporated in cryogels was a successful means for applying small particles (nano- and micro- scale) in water solutions with maintained adsorption capacity and kinetics. Low capacity was obtained from SH-cryo and this adsorbent was hence excluded from the study. The adsorption capacities for the composites were 20.3 ± 0.8 mg/g adsorbent (Alu-cryo) and 7.9 ± 0.7 mg/g adsorbent (MIP-cryo) respectively. From SEM images it was seen that particles were homogeneously distributed in Alu-cryo and heterogeneously distributed in MIP-cryo. The particle incorporation increased the mechanical stability and the polymer backbones of pure polyacrylamide (MIP-cryo) were of better stability than the amine containing polymer backbone (Alu-cryo). Both composites worked well in the studied pH range of pH 2-8. Adsorption tested in real wastewater spiked with arsenic showed that co-ions (nitrate, sulphate and phosphate) affected arsenic removal for Alu-cryo more than for MIP-cryo. Both composites still adsorbed well in the presence of counter-ions (copper and zinc) present at low concentrations (μg/l). The unchanged and selective adsorption in realistic water observed for MIP-cryo was concluded to be due to a successful imprinting, here controlled using a non-imprinted polymer (NIP). A development of MIP-cryo is needed, considering its low adsorption capacity.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources