Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2011;44(3):229-34.
Epub 2011 Nov 7.

Testis-mediated gene transfer in mice: comparison of transfection reagents regarding transgene transmission and testicular damage

Affiliations
  • PMID: 22688909
Free article

Testis-mediated gene transfer in mice: comparison of transfection reagents regarding transgene transmission and testicular damage

Marta G Amaral et al. Biol Res. 2011.
Free article

Abstract

Testis-mediated gene transfer (TMGT) has been used as in vivo gene transfer technology to introduce foreign DNA directly into testes, allowing mass gene transfer to offspring via mating. In this study, we used plasmid DNA (pEGFP-N1) mixed with dimethylsulfoxide (DMSO), N,N-dimethylacetamide (DMA) or liposome (Lipofectin) in an attempt to improve TMGT. Males receiving consecutive DNA complex injections were mated to normal females to obtain F0 progeny. In vivo evaluation of EGFP expression, RT-PCR and PCR were used to detect the expression and the presence of exogenous DNA in the progeny. We also evaluated possible testicular damage by histological procedures. PC R and RT-PCR analyses revealed that liposome and DMSO increased the rate of TMGT. Histological analyses demonstrated that repeated (4 times) injections of DNA complexes can affect spermatogenesis. DMSO was the most deleterious among the reagents tested. In this study, we detected the presence of transgene in the progeny, and its expression in blood cells. Consecutive injections of DNA complexes were associated with impaired spermatogenesis, suggesting requirement of optimal conditions for DNA delivery through TMGT.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources