Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2012 Jun;83(6):439-45.
doi: 10.1111/j.1740-0929.2012.01011.x. Epub 2012 Mar 13.

Perspectives on improvement of reproduction in cattle during heat stress in a future Japan

Affiliations
Review

Perspectives on improvement of reproduction in cattle during heat stress in a future Japan

Hiroya Kadokawa et al. Anim Sci J. 2012 Jun.

Abstract

Heat stress (HS) causes hyperthermia, and at its most severe form, can lead to death. More commonly, HS reduces feed intake, milk yield, growth rate and reproductive function in many mammals and birds, including the important cattle breeds in Japan. Rectal temperatures greater than 39.0°C and respiration rates greater than 60/min indicate cows are undergoing HS sufficient to affect milk yield and fertility. HS compromises oocyte quality and embryonic development, reduces expression of estrus and changes secretion of several reproductive hormones. One of the most effective ways to reduce the magnitude of HS is embryo transfer, which bypasses the inhibitory effects of HS on the oocyte and early embryo. It may also be possible to select for genetic resistance to HS. Cooling can also improve reproductive performance in cows and heifers, and probably, the most effective cooling systems currently in use are those that couple evaporative cooling with tunnel ventilation or cross ventilation. Its effect on improving reproductive performance in Japan remains to be evaluated.

PubMed Disclaimer

Publication types

LinkOut - more resources