Ecological and anthropogenic drivers of rabies exposure in vampire bats: implications for transmission and control
- PMID: 22696521
- PMCID: PMC3396893
- DOI: 10.1098/rspb.2012.0538
Ecological and anthropogenic drivers of rabies exposure in vampire bats: implications for transmission and control
Abstract
Despite extensive culling of common vampire bats in Latin America, lethal human rabies outbreaks transmitted by this species are increasingly recognized, and livestock rabies occurs with striking frequency. To identify the individual and population-level factors driving rabies virus (RV) transmission in vampire bats, we conducted a longitudinal capture-recapture study in 20 vampire bat colonies spanning four regions of Peru. Serology demonstrated the circulation of RV in vampire bats from all regions in all years. Seroprevalence ranged from 3 to 28 per cent and was highest in juvenile and sub-adult bats. RV exposure was independent of bat colony size, consistent with an absence of population density thresholds for viral invasion and extinction. Culling campaigns implemented during our study failed to reduce seroprevalence and were perhaps counterproductive for disease control owing to the targeted removal of adults, but potentially greater importance of juvenile and sub-adult bats for transmission. These findings provide new insights into the mechanisms of RV maintenance in vampire bats and highlight the need for ecologically informed approaches to rabies prevention in Latin America.
Figures



Similar articles
-
Human rabies and rabies in vampire and nonvampire bat species, Southeastern Peru, 2007.Emerg Infect Dis. 2009 Aug;15(8):1308-10. doi: 10.3201/eid1508.081522. Emerg Infect Dis. 2009. PMID: 19751600 Free PMC article.
-
Anthropogenic roost switching and rabies virus dynamics in house-roosting big brown bats.Vector Borne Zoonotic Dis. 2013 Jul;13(7):498-504. doi: 10.1089/vbz.2012.1113. Epub 2013 Apr 16. Vector Borne Zoonotic Dis. 2013. PMID: 23590325
-
Effects of culling vampire bats on the spatial spread and spillover of rabies virus.Sci Adv. 2023 Mar 10;9(10):eadd7437. doi: 10.1126/sciadv.add7437. Epub 2023 Mar 10. Sci Adv. 2023. PMID: 36897949 Free PMC article.
-
Vampire bat rabies: ecology, epidemiology and control.Viruses. 2014 Apr 29;6(5):1911-28. doi: 10.3390/v6051911. Viruses. 2014. PMID: 24784570 Free PMC article. Review.
-
Defining New Pathways to Manage the Ongoing Emergence of Bat Rabies in Latin America.Viruses. 2020 Sep 8;12(9):1002. doi: 10.3390/v12091002. Viruses. 2020. PMID: 32911766 Free PMC article. Review.
Cited by
-
Impact of Molecular Modifications on the Immunogenicity and Efficacy of Recombinant Raccoon Poxvirus-Vectored Rabies Vaccine Candidates in Mice.Vaccines (Basel). 2021 Dec 4;9(12):1436. doi: 10.3390/vaccines9121436. Vaccines (Basel). 2021. PMID: 34960182 Free PMC article.
-
The emergence of vampire bat rabies in Uruguay within a historical context.Epidemiol Infect. 2019 Jan;147:e180. doi: 10.1017/S0950268819000682. Epidemiol Infect. 2019. PMID: 31063102 Free PMC article.
-
Disease Avoidance Model Explains the Acceptance of Cohabitation With Bats During the COVID-19 Pandemic.Front Psychol. 2021 Jul 16;12:635874. doi: 10.3389/fpsyg.2021.635874. eCollection 2021. Front Psychol. 2021. PMID: 34335357 Free PMC article.
-
Oral vaccination of wildlife using a vaccinia-rabies-glycoprotein recombinant virus vaccine (RABORAL V-RG®): a global review.Vet Res. 2017 Sep 22;48(1):57. doi: 10.1186/s13567-017-0459-9. Vet Res. 2017. PMID: 28938920 Free PMC article. Review.
-
Reproductive seasonality, sex ratio and philopatry in Argentina's common vampire bats.R Soc Open Sci. 2017 Apr 26;4(4):160959. doi: 10.1098/rsos.160959. eCollection 2017 Apr. R Soc Open Sci. 2017. PMID: 28484615 Free PMC article.
References
-
- Calisher C. H., Childs J. E., Field H. E., Holmes K. V., Schountz T. 2006. Bats: important reservoir hosts of emerging viruses. Clin. Microbiol. Rev. 19, 531–545 10.1128/CMR.00017-06 (doi:10.1128/CMR.00017-06) - DOI - DOI - PMC - PubMed
-
- Plowright R. K., Field H. E., Smith C., Divljan A., Palmer C., Tabor G., Daszak P., Foley J. E. 2008. Reproduction and nutritional stress are risk factors for Hendra virus infection in little red flying foxes (Pteropus scapulatus). Proc. R. Soc. B 275, 861–869 10.1098/rspb.2007.1260 (doi:10.1098/rspb.2007.1260) - DOI - DOI - PMC - PubMed
-
- Amengual B., Bourhy H., Lopez-Roig M., Serra-Cobo J. 2007. Temporal dynamics of European bat lyssavirus type 1 and survival of Myotis myotis in natural colonies. PLoS ONE 2, e566 10.1371/journal.pone.0000566 (doi:10.1371/journal.pone.0000566) - DOI - DOI - PMC - PubMed
-
- Wacharapluesadee S., Boongird K., Wanghongsa S., Ratanasetyuth N., Supavonwong P., Saengsen D., Gongal G., Hemachudha T. 2010. A longitudinal study of the prevalence of Nipah virus in Pteropus lylei bats in Thailand: evidence for seasonal preference in disease transmission. Vector-Borne Zoonotic Dis. 10, 183–190 10.1089/vbz.2008.0105 (doi:10.1089/vbz.2008.0105) - DOI - DOI - PubMed
-
- World Health Organization 2005. WHO expert consultation on rabies: first report 5–8 Oct 2004. Geneva, Switzerland: World Health Organization. Technical report, vol. 931, pp. 1–88 - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Medical