Evolution of foraging behaviour in response to chronic malnutrition in Drosophila melanogaster
- PMID: 22696523
- PMCID: PMC3396918
- DOI: 10.1098/rspb.2012.0966
Evolution of foraging behaviour in response to chronic malnutrition in Drosophila melanogaster
Abstract
Chronic exposure to food of low quality may exert conflicting selection pressures on foraging behaviour. On the one hand, more active search behaviour may allow the animal to find patches with slightly better, or more, food; on the other hand, such active foraging is energetically costly, and thus may be opposed by selection for energetic efficiency. Here, we test these alternative hypotheses in Drosophila larvae. We show that populations which experimentally evolved improved tolerance to larval chronic malnutrition have shorter foraging path length than unselected control populations. A behavioural polymorphism in foraging path length (the rover-sitter polymorphism) exists in nature and is attributed to the foraging locus (for). We show that a sitter strain (for(s2)) survives better on the poor food than the rover strain (for(R)), confirming that the sitter foraging strategy is advantageous under malnutrition. Larvae of the selected and control populations did not differ in global for expression. However, a quantitative complementation test suggests that the for locus may have contributed to the adaptation to poor food in one of the selected populations, either through a change in for allele frequencies, or by interacting epistatically with alleles at other loci. Irrespective of its genetic basis, our results provide two independent lines of evidence that sitter-like foraging behaviour is favoured under chronic larval malnutrition.
Figures



Similar articles
-
Foraging behaviour in Drosophila larvae: mushroom body ablation.Chem Senses. 2001 Feb;26(2):223-30. doi: 10.1093/chemse/26.2.223. Chem Senses. 2001. PMID: 11238255
-
Evolution of foraging behavior in Drosophila by density-dependent selection.Proc Natl Acad Sci U S A. 1997 Jul 8;94(14):7373-7. doi: 10.1073/pnas.94.14.7373. Proc Natl Acad Sci U S A. 1997. PMID: 9207098 Free PMC article.
-
The foraging locus: behavioral tests for normal muscle movement in rover and sitter Drosophila melanogaster larvae.Genetica. 1992;85(3):205-9. doi: 10.1007/BF00132272. Genetica. 1992. PMID: 1521800
-
The foraging Gene and Its Behavioral Effects: Pleiotropy and Plasticity.Annu Rev Genet. 2019 Dec 3;53:373-392. doi: 10.1146/annurev-genet-112618-043536. Epub 2019 Sep 5. Annu Rev Genet. 2019. PMID: 31487469 Review.
-
cGMP-dependent protein kinase: linking foraging to energy homeostasis.Genome. 2009 Jan;52(1):1-7. doi: 10.1139/G08-090. Genome. 2009. PMID: 19132066 Review.
Cited by
-
How flies respond to honey bee pheromone: the role of the foraging gene on reproductive response to queen mandibular pheromone.Naturwissenschaften. 2014 Jan;101(1):25-31. doi: 10.1007/s00114-013-1125-3. Epub 2013 Dec 10. Naturwissenschaften. 2014. PMID: 24323176
-
Prepupal building behavior in Drosophila melanogaster and its evolution under resource and time constraints.PLoS One. 2015 Feb 11;10(2):e0117280. doi: 10.1371/journal.pone.0117280. eCollection 2015. PLoS One. 2015. PMID: 25671711 Free PMC article.
-
Cis-regulatory polymorphism at fiz ecdysone oxidase contributes to polygenic evolutionary response to malnutrition in Drosophila.PLoS Genet. 2024 Mar 7;20(3):e1011204. doi: 10.1371/journal.pgen.1011204. eCollection 2024 Mar. PLoS Genet. 2024. PMID: 38452112 Free PMC article.
-
Undernutrition-induced stunting-like phenotype in Drosophila melanogaster.Narra J. 2024 Dec;4(3):e999. doi: 10.52225/narra.v4i3.999. Epub 2024 Dec 16. Narra J. 2024. PMID: 39816060 Free PMC article.
-
Starvation-Induced Dietary Behaviour in Drosophila melanogaster Larvae and Adults.Sci Rep. 2015 Sep 24;5:14285. doi: 10.1038/srep14285. Sci Rep. 2015. PMID: 26399327 Free PMC article.
References
-
- Stubbs R. J., Tolkamp B. J. 2006. Control of energy balance in relation to energy intake and energy expenditure in animals and man: an ecological perspective. Br. J. Nutr. 95, 657–676 10.1079/bjn20041361 (doi:10.1079/bjn20041361) - DOI - DOI - PubMed
-
- Wang T., Hung C. C. Y., Randall D. J. 2006. The comparative physiology of food deprivation: from feast to famine. Annu. Rev. Physiol. 68, 223–251 10.1146/annurev.physiol.68.040104.105739 (doi:10.1146/annurev.physiol.68.040104.105739) - DOI - DOI - PubMed
-
- Pyke G. H. 1984. Optimal foraging theory—a critical review. Annu. Rev. Ecol. Syst. 15, 523–575 10.1146/annurev.ecolsys.15.1.523 (doi:10.1146/annurev.ecolsys.15.1.523) - DOI - DOI
-
- Sokolowski M. B., Pereira H. S., Hughes K. 1997. Evolution of foraging behavior in Drosophila by density-dependent selection. Proc. Natl Acad. Sci. USA 94, 7373–7377 10.1073/pnas.94.14.7373 (doi:10.1073/pnas.94.14.7373) - DOI - DOI - PMC - PubMed
-
- Joshi A., Mueller L. D. 1988. Evolution of higher feeding rate in Drosophila due to density-dependent natural selection. Evolution 42, 1090–1093 10.2307/2408924 (doi:10.2307/2408924) - DOI - DOI - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Molecular Biology Databases