Advantages of the division of labour for the long-term population dynamics of cyanobacteria at different latitudes
- PMID: 22696525
- PMCID: PMC3396907
- DOI: 10.1098/rspb.2012.0755
Advantages of the division of labour for the long-term population dynamics of cyanobacteria at different latitudes
Abstract
A fundamental advancement in the evolution of complexity is division of labour. This implies a partition of tasks among cells, either spatially through cellular differentiation, or temporally via a circadian rhythm. Cyanobacteria often employ either spatial differentiation or a circadian rhythm in order to separate the chemically incompatible processes of nitrogen fixation and photosynthesis. We present a theoretical framework to assess the advantages in terms of biomass production and population size for three species types: terminally differentiated (heterocystous), circadian, and an idealized species in which nitrogen and carbon fixation occur without biochemical constraints. On the basis of real solar irradiance data at different latitudes, we simulate population dynamics in isolation and in competition for light over a period of 40 years. Our results show that in isolation and regardless of latitude, the biomass of heterocystous cyanobacteria that optimally invest resources is comparable to that of the idealized unconstrained species. Hence, spatial division of labour overcomes biochemical constraints and enhances biomass production. In the circadian case, the strict temporal task separation modelled here hinders high biomass production in comparison with the heterocystous species. However, circadian species are found to be successful in competition for light whenever their resource investment prevents a waste of fixed nitrogen more effectively than do heterocystous species. In addition, we show the existence of a trade-off between population size and biomass accumulation, whereby each species can optimally invest resources to be proficient in biomass production or population growth, but not necessarily both. Finally, the model produces chaotic dynamics for population size, which is relevant to the study of cyanobacterial blooms.
Figures





Similar articles
-
The evolutionary path to terminal differentiation and division of labor in cyanobacteria.J Theor Biol. 2010 Jan 7;262(1):23-34. doi: 10.1016/j.jtbi.2009.09.009. Epub 2009 Sep 15. J Theor Biol. 2010. PMID: 19761779
-
Photoperiod length paces the temporal orchestration of cell cycle and carbon-nitrogen metabolism in Crocosphaera watsonii.Environ Microbiol. 2013 Dec;15(12):3292-304. doi: 10.1111/1462-2920.12163. Epub 2013 Jul 10. Environ Microbiol. 2013. PMID: 23841885
-
The Transcriptional Cycle Is Suited to Daytime N2 Fixation in the Unicellular Cyanobacterium "Candidatus Atelocyanobacterium thalassa" (UCYN-A).mBio. 2019 Jan 2;10(1):e02495-18. doi: 10.1128/mBio.02495-18. mBio. 2019. PMID: 30602582 Free PMC article.
-
Cyanofuels: biofuels from cyanobacteria. Reality and perspectives.Photosynth Res. 2015 Aug;125(1-2):329-40. doi: 10.1007/s11120-015-0103-3. Epub 2015 Feb 22. Photosynth Res. 2015. PMID: 25702086 Review.
-
Eco-physiological adaptations that favour freshwater cyanobacteria in a changing climate.Water Res. 2012 Apr 1;46(5):1394-407. doi: 10.1016/j.watres.2011.12.016. Epub 2011 Dec 16. Water Res. 2012. PMID: 22217430 Review.
Cited by
-
Horizontal transfer of DNA methylation patterns into bacterial chromosomes.Nucleic Acids Res. 2016 May 19;44(9):4460-71. doi: 10.1093/nar/gkw230. Epub 2016 Apr 15. Nucleic Acids Res. 2016. PMID: 27084942 Free PMC article.
-
Bacterial solutions to multicellularity: a tale of biofilms, filaments and fruiting bodies.Nat Rev Microbiol. 2014 Feb;12(2):115-24. doi: 10.1038/nrmicro3178. Epub 2014 Jan 2. Nat Rev Microbiol. 2014. PMID: 24384602 Review.
-
Trichodesmium--a widespread marine cyanobacterium with unusual nitrogen fixation properties.FEMS Microbiol Rev. 2013 May;37(3):286-302. doi: 10.1111/j.1574-6976.2012.00352.x. Epub 2012 Sep 20. FEMS Microbiol Rev. 2013. PMID: 22928644 Free PMC article. Review.
-
Minor variations in multicellular life cycles have major effects on adaptation.PLoS Comput Biol. 2023 Apr 21;19(4):e1010698. doi: 10.1371/journal.pcbi.1010698. eCollection 2023 Apr. PLoS Comput Biol. 2023. PMID: 37083675 Free PMC article.
-
Evolution of multicellularity coincided with increased diversification of cyanobacteria and the Great Oxidation Event.Proc Natl Acad Sci U S A. 2013 Jan 29;110(5):1791-6. doi: 10.1073/pnas.1209927110. Epub 2013 Jan 14. Proc Natl Acad Sci U S A. 2013. PMID: 23319632 Free PMC article.
References
-
- Kirk D. L. 2001. Germ-soma differentiation in Volvox. Dev. Biol. 238, 213–223 10.1006/dbio.2001.0402 (doi:10.1006/dbio.2001.0402) - DOI - DOI - PubMed
-
- Capone D. G., Burns J. A., Montoya J. P., Subramaniam A., Mahaffey C., Gunderson T. A. F., Michaels A., Carpenter E. J. 2005. Nitrogen fixation by Trichodesmium spp.: an important source of new nitrogen to the tropical and subtropical North Atlantic Ocean. Global Biogeochem. Cycles 19, GB2024 10.1029/2004GB002331 (doi:10.1029/2004GB002331). - DOI - DOI
-
- Church M. J., Bjorkman K. M., Karl D. M., Saito M. A., Zehr J. P. 2008. Regional distributions of nitrogen-fixing bacteria in the Pacific Ocean. Limnol. Oceanogr. 53, 63–77 10.4319/lo.2008.53.1.0063 (doi:10.4319/lo.2008.53.1.0063) - DOI - DOI
-
- Monteiro F. M., Follows M. J., Dutkiewicz S. 2010. Distribution of diverse nitrogen fixers in the global ocean. Global Biogeochem. Cycles 24, GB3017 10.1029/2009GB003731 (doi:10.1029/2009GB003731). - DOI - DOI
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources