Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1990 Nov;88(5):2196-204.
doi: 10.1121/1.400116.

The auditory periphery of the ferret. II: The spectral transformations of the external ear and their implications for sound localization

Affiliations

The auditory periphery of the ferret. II: The spectral transformations of the external ear and their implications for sound localization

S Carlile. J Acoust Soc Am. 1990 Nov.

Abstract

In the previous paper the directional response characteristics of the ferret auditory periphery were examined. In this study further measurements of the spectral transfer functions (STFs) of the auditory periphery were obtained at locations close to the tympanic membrane. There was considerable variation in the STFs recorded from different animals and between recordings made at each end of the auditory canal in the same animal. However, calculation of the so called "location dependency function" demonstrated that changes in the location of the stimulus produced the same pattern of changes in the STFs in all recordings. Changes in the spectral transformation for azimuth locations in the ipsilateral auditory field were examined by calculating the horizon STF. The gain transformations of frequencies below 20 kHz were found to be asymmetrical about the interaural axis so that maximum gain was obtained for anterior stimulus locations. In contrast, the maximum gain for frequencies above 20 kHz was obtained for stimulus locations about the interaural axis, and movement of the stimulus location into either the anterior or posterior fields produced symmetrical reductions in gain. These changes were related to the directional properties of the periphery examined in the previous paper [S. Carlile, J. Acoust. Soc. Am. 88, 2180-2195 (1990)]. The spatial resolution of the monaural information provided by the peripheral STFs is dependent on the rate of change of the transformations as a function of azimuthal displacement of the stimulus location. This was examined by calculating the unsigned first spatial derivative for each frequency in the horizon STF.(ABSTRACT TRUNCATED AT 250 WORDS)

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources