Active axial stress in mouse aorta
- PMID: 22698830
- DOI: 10.1016/j.jbiomech.2012.05.025
Active axial stress in mouse aorta
Abstract
The study verifies the development of active axial stress in the wall of mouse aorta over a range of physiological loads when the smooth muscle cells are stimulated to contract. The results obtained show that the active axial stress is virtually independent of the magnitude of pressure, but depends predominately on the longitudinal stretch ratio. The dependence is non-monotonic and is similar to the active stress-stretch dependence in the circumferential direction reported in the literature. The expression for the active axial stress fitted to the experimental data shows that the maximum active stress is developed at longitudinal stretch ratio 1.81, and 1.56 is the longitudinal stretch ratio below which the stimulation does not generate active stress. The study shows that the magnitude of active axial stress is smaller than the active circumferential stress. There is need for more experimental investigations on the active response of different types of arteries from different species and pathological conditions. The results of these studies can promote building of refined constrictive models in vascular rheology.
Copyright © 2012 Elsevier Ltd. All rights reserved.
Similar articles
-
Mechanical anisotropy of inflated elastic tissue from the pig aorta.J Biomech. 2010 Aug 10;43(11):2070-8. doi: 10.1016/j.jbiomech.2010.04.014. Epub 2010 Apr 28. J Biomech. 2010. PMID: 20430395
-
Longitudinal differences in the mechanical properties of the thoracic aorta depend on circumferential regions.J Biomed Mater Res A. 2013 May;101(5):1525-9. doi: 10.1002/jbm.a.34445. Epub 2012 Nov 5. J Biomed Mater Res A. 2013. PMID: 23129235
-
Stretch-elicited calcium responses in the intact mouse thoracic aorta.Cell Calcium. 2007 Jan;41(1):41-50. doi: 10.1016/j.ceca.2006.04.030. Epub 2006 Jul 28. Cell Calcium. 2007. PMID: 16876243
-
Contribution of elastin and collagen to the inflation response of the pig thoracic aorta: assessing elastin's role in mechanical homeostasis.J Biomech. 2012 Aug 9;45(12):2133-41. doi: 10.1016/j.jbiomech.2012.05.034. Epub 2012 Jul 5. J Biomech. 2012. PMID: 22770359
-
Experimental system for ex vivo measurement of murine aortic stiffness.Physiol Meas. 2007 Aug;28(8):N39-49. doi: 10.1088/0967-3334/28/8/N01. Epub 2007 Jul 6. Physiol Meas. 2007. PMID: 17664666 Review.
Cited by
-
Reduced Biaxial Contractility in the Descending Thoracic Aorta of Fibulin-5 Deficient Mice.J Biomech Eng. 2016 May;138(5):051008. doi: 10.1115/1.4032938. J Biomech Eng. 2016. PMID: 26963838 Free PMC article.
-
Multiscale and Multiaxial Mechanics of Vascular Smooth Muscle.Biophys J. 2017 Aug 8;113(3):714-727. doi: 10.1016/j.bpj.2017.06.017. Biophys J. 2017. PMID: 28793225 Free PMC article.
-
Smooth muscle regional contribution to vaginal wall function.Interface Focus. 2019 Aug 6;9(4):20190025. doi: 10.1098/rsfs.2019.0025. Epub 2019 Jun 14. Interface Focus. 2019. PMID: 31263538 Free PMC article.
-
Contractile Smooth Muscle and Active Stress Generation in Porcine Common Carotids.J Biomech Eng. 2018 Jan 1;140(1):0145011-6. doi: 10.1115/1.4037949. J Biomech Eng. 2018. PMID: 28975258 Free PMC article.
-
A microstructurally motivated model of arterial wall mechanics with mechanobiological implications.Ann Biomed Eng. 2014 Mar;42(3):488-502. doi: 10.1007/s10439-013-0928-x. Epub 2013 Nov 7. Ann Biomed Eng. 2014. PMID: 24197802 Free PMC article.
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources