Hormonal programming across the lifespan
- PMID: 22700441
- PMCID: PMC3756611
- DOI: 10.1055/s-0032-1312593
Hormonal programming across the lifespan
Abstract
Hormones influence countless biological processes across an animal's lifespan. Many hormone-mediated events occur within developmental sensitive periods, during which hormones have the potential to cause permanent tissue-specific alterations in anatomy and physiology. There are numerous selective critical periods in development with different targets being affected during different periods. This review outlines the proceedings of the Hormonal Programming in Development session at the US-South American Workshop in Neuroendocrinology in August 2011. Here we discuss how gonadal steroid hormones impact various biological processes within the brain and gonads during early development and describe the changes that take place in the aging female ovary. At the cellular level, hormonal targets in the brain include neurons, glia, or vasculature. On a genomic/epigenomic level, transcription factor signaling and epigenetic changes alter the expression of critical hormone receptor genes across development and following ischemic brain insult. In addition, organizational hormone exposure alters epigenetic processes in specific brain nuclei and may be an important mediator of sexual differentiation of the neonatal brain. Brain targets of hormonal programming, such as the paraventricular nucleus of the hypothalamus, may be critical in influencing the development of peripheral targets, such as the ovary. Exposure to excess hormones can cause abnormalities in the ovary during development leading to polycystic ovarian syndrome (PCOS). Exposure to excess androgens during fetal development also has a profound effect on the development of the male reproductive system. In addition, increased activity of the sympathetic nerve and stress during early life have been linked to PCOS symptomology in adulthood. Finally, we describe how age-related decreases in fertility are linked to high levels of nerve growth factor (NGF), which enhances sympathetic nerve activity and alters ovarian function.
© Georg Thieme Verlag KG Stuttgart · New York.
Figures


Similar articles
-
Developmental and hormone-induced epigenetic changes to estrogen and progesterone receptor genes in brain are dynamic across the life span.Endocrinology. 2010 Oct;151(10):4871-81. doi: 10.1210/en.2010-0142. Epub 2010 Aug 11. Endocrinology. 2010. PMID: 20702577 Free PMC article.
-
[Gonadal function of rats following pre- or postnatal administration of some hormones (author's transl)].Arch Gynakol. 1976 Sep 17;221(2):103-18. doi: 10.1007/BF00667140. Arch Gynakol. 1976. PMID: 990054 German.
-
Developmental programming of the neuroendocrine axis by steroid hormones: Insights from the sheep model of PCOS.Front Endocrinol (Lausanne). 2023 Jan 23;14:1096187. doi: 10.3389/fendo.2023.1096187. eCollection 2023. Front Endocrinol (Lausanne). 2023. PMID: 36755919 Free PMC article. Review.
-
Excess of ovarian nerve growth factor impairs embryonic development and causes reproductive and metabolic dysfunction in adult female mice.FASEB J. 2020 Nov;34(11):14440-14457. doi: 10.1096/fj.202001060R. Epub 2020 Sep 5. FASEB J. 2020. PMID: 32892421
-
Hormones and human developmental plasticity.Mol Cell Endocrinol. 2020 Apr 5;505:110721. doi: 10.1016/j.mce.2020.110721. Epub 2020 Jan 28. Mol Cell Endocrinol. 2020. PMID: 32004677 Review.
Cited by
-
Sex Differences in Cognition Across Aging.Curr Top Behav Neurosci. 2023;62:235-284. doi: 10.1007/7854_2022_309. Curr Top Behav Neurosci. 2023. PMID: 35467294 Review.
-
Developmental Programming of Ovarian Functions and Dysfunctions.Vitam Horm. 2018;107:377-422. doi: 10.1016/bs.vh.2018.01.017. Epub 2018 Feb 22. Vitam Horm. 2018. PMID: 29544638 Free PMC article. Review.
-
Gamma power in rural Pakistani children: Links to executive function and verbal ability.Dev Cogn Neurosci. 2017 Aug;26:1-8. doi: 10.1016/j.dcn.2017.03.007. Epub 2017 Mar 31. Dev Cogn Neurosci. 2017. PMID: 28436831 Free PMC article.
-
Sex differences in brain plasticity: a new hypothesis for sex ratio bias in autism.Mol Autism. 2015 Jun 5;6:33. doi: 10.1186/s13229-015-0024-1. eCollection 2015. Mol Autism. 2015. PMID: 26052415 Free PMC article.
-
Sex differences in aging, life span and spontaneous tumorigenesis in 129/Sv mice neonatally exposed to metformin.Cell Cycle. 2015;14(1):46-55. doi: 10.4161/15384101.2014.973308. Cell Cycle. 2015. PMID: 25483062 Free PMC article.
References
-
- Rhees RW, Shryne JE, Gorski RA. Onset of the hormone-sensitive perinatal period for sexual differentiation of the sexually dimorphic nucleus of the preoptic area in female rats. J Neurobiol. 1990;21:781–786. - PubMed
-
- Arnold AP, Gorski RA. Gonadal steroid induction of structural sex differences in the central nervous system. Annu Rev Neurosci. 1984;7:413–442. - PubMed
-
- Bakker J, De Mees C, Douhard Q, Balthazart J, Gabant P, Szpirer J, Szpirer C. Alpha-fetoprotein protects the developing female mouse brain from masculinization and defeminization by estrogens. Nat Neurosci. 2006;9:220–226. - PubMed
-
- McEwen BS, Lieberburg I, Chaptal C, Krey LC. Aromatization: important for sexual differentiation of the neonatal rat brain. Horm Behav. 1977;9:249–263. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Medical