Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2012;7(5):e38024.
doi: 10.1371/journal.pone.0038024. Epub 2012 May 31.

RNA folding and catalysis mediated by iron (II)

Affiliations

RNA folding and catalysis mediated by iron (II)

Shreyas S Athavale et al. PLoS One. 2012.

Abstract

Mg²⁺ shares a distinctive relationship with RNA, playing important and specific roles in the folding and function of essentially all large RNAs. Here we use theory and experiment to evaluate Fe²⁺ in the absence of free oxygen as a replacement for Mg²⁺ in RNA folding and catalysis. We describe both quantum mechanical calculations and experiments that suggest that the roles of Mg²⁺ in RNA folding and function can indeed be served by Fe²⁺. The results of quantum mechanical calculations show that the geometry of coordination of Fe²⁺ by RNA phosphates is similar to that of Mg²⁺. Chemical footprinting experiments suggest that the conformation of the Tetrahymena thermophila Group I intron P4-P6 domain RNA is conserved between complexes with Fe²⁺ or Mg²⁺. The catalytic activities of both the L1 ribozyme ligase, obtained previously by in vitro selection in the presence of Mg²⁺, and the hammerhead ribozyme are enhanced in the presence of Fe²⁺ compared to Mg²⁺. All chemical footprinting and ribozyme assays in the presence of Fe²⁺ were performed under anaerobic conditions. The primary motivation of this work is to understand RNA in plausible early earth conditions. Life originated during the early Archean Eon, characterized by a non-oxidative atmosphere and abundant soluble Fe²⁺. The combined biochemical and paleogeological data are consistent with a role for Fe²⁺ in an RNA World. RNA and Fe²⁺ could, in principle, support an array of RNA structures and catalytic functions more diverse than RNA with Mg²⁺ alone.

PubMed Disclaimer

Conflict of interest statement

Competing Interests: The authors have declared that no competing interests exist.

Figures

Figure 1
Figure 1. Conformations of RNA-Mg2+ and RNA-Fe2+ clamps are nearly identical.
A) RNA-Mg2+ clamp from the L1 ribozyme ligase (PDB 2OIU). B) RNA-Mg2+ clamp optimized by high level QM calculations. C) An optimized RNA-Fe2+ clamp. Each cation (Mg2+ or Fe2+) is hexacoordinate. Mg2+ is shown as a yellow sphere and Fe2+ is shown as a green sphere. Water molecules are omitted from the images for clarity. Distances are in Å.
Figure 2
Figure 2. Addition of Mg2+ or Fe2+ causes the same changes in the SHAPE reactivity of the P4–P6 domain of the T. thermophila Group 1 intron.
A) Shape profile in presence of 250 mM NaCl and no divalent cations. B) The addition of Mg2+ increases the reactivity at the sites indicated with the asterisks and decreases reactivity at other sites. This reaction contains 2.5 mM Mg2+ and 250 mM NaCl. C) The addition of Fe2+ causes the same changes in SHAPE reactivity as Mg2+. This reaction contains 2.5 mM Fe2+ and 250 mM NaCl.
Figure 3
Figure 3. Ribozyme activity is enhanced by Fe2+ compared to Mg2+.
A) L1 ribozyme ligase activity is enhanced in Fe2+ compared to Mg2+. Ligase reactions were performed under anaerobic conditions at room temperature and 250 mM Na+ in 100 µM [Fe2+] or 100 µM [Mg2+]. The reaction components were first annealed in 50 mM HEPES, pH 8.0, 200 mM sodium acetate by incubating at 90°C for 3 min and cooling to room temperature over 30 min. The ligation reaction was initiated by adding the appropriate cation salt. The Na+ only reaction gave no product. Reaction progress was monitored by gel electrophoresis. B) Hammerhead ribozyme activity is enhanced in Fe2+ compared to Mg2+. Hammerhead ribozyme cleavage reactions were performed under anaerobic conditions at room temperature in 50 mM HEPES, pH 7.5 and 25 µM [Fe2+] or 25 µM [Mg2+]. Substrate and ribozyme RNA strands were first annealed in 50 mM HEPES buffer by incubating at 90°C for 2 min and cooling to room temperature over 30 min. Cleavage reactions were initiated by addition of FeCl2 or MgCl2 from stock solutions. Reactions were monitored by both gel electrophoresis and capillary electrophoresis, which gave similar results.

Similar articles

Cited by

References

    1. Stein A, Crothers DM. Conformational changes of transfer RNA. The role of magnesium (II) equilibrium binding of magnesium (II) by Escherichia coli tRNAfMet. Biochemistry. 1976;15:160–168. - PubMed
    1. Lynch DC, Schimmel PR. Cooperative binding of magnesium to transfer ribonucleic acid studied by a fluorescent probe. Biochemistry. 1974;13:1841–1852. - PubMed
    1. Lindahl T, Adams A, Fresco JR. Renaturation of transfer ribonucleic acids through site binding of magnesium. Proc Natl Acad Sci U S A. 1966;55:941–948. - PMC - PubMed
    1. Brion P, Westhof E. Hierarchy and dynamics of RNA folding. Annu Rev Biophys Biomol Struct. 1997;26:113–137. - PubMed
    1. Draper DE. RNA folding: Thermodynamic and molecular descriptions of the roles of ions. Biophys J. 2008;95:5489–5495. - PMC - PubMed

Publication types