Controlling Parasympathetic Regulation of Heart Rate: A Gatekeeper Role for RGS Proteins in the Sinoatrial Node
- PMID: 22707940
- PMCID: PMC3374348
- DOI: 10.3389/fphys.2012.00204
Controlling Parasympathetic Regulation of Heart Rate: A Gatekeeper Role for RGS Proteins in the Sinoatrial Node
Abstract
Neurotransmitters released from sympathetic and parasympathetic nerve terminals in the sinoatrial node (SAN) exert their effects via G-protein-coupled receptors. Integration of these different G-protein signals within pacemaker cells of the SAN is critical for proper regulation of heart rate and function. For example, excessive parasympathetic signaling can be associated with sinus node dysfunction (SND) and supraventricular arrhythmias. Our previous work has shown that one member of the regulator of G-protein signaling (RGS) protein family, RGS4, is highly and selectively expressed in pacemaker cells of the SAN. Consistent with its role as an inhibitor of parasympathetic signaling, RGS4-knockout mice have reduced basal heart rates and enhanced negative chronotropic responses to parasympathetic agonists. Moreover, RGS4 appears to be an important part of SA nodal myocyte signaling pathways that mediate G-protein-coupled inwardly rectifying potassium channel (GIRK) channel activation/deactivation and desensitization. Since RGS4 acts immediately downstream of M2 muscarinic receptors, it is tempting to speculate that RGS4 functions as a master regulator of parasympathetic signaling upstream of GIRKs, HCNs, and L-type Ca(2+) channels in the SAN. Thus, loss of RGS4 function may lead to increased susceptibility to conditions associated with increased parasympathetic signaling, including bradyarrhythmia, SND, and atrial fibrillation.
Keywords: GIRK channels; RGS protein; bradyarrhythmia; parasympathetic signaling; sinoatrial node.
Figures

Similar articles
-
RGS6, but not RGS4, is the dominant regulator of G protein signaling (RGS) modulator of the parasympathetic regulation of mouse heart rate.J Biol Chem. 2014 Jan 24;289(4):2440-9. doi: 10.1074/jbc.M113.520742. Epub 2013 Dec 6. J Biol Chem. 2014. PMID: 24318880 Free PMC article.
-
RGS4 regulates parasympathetic signaling and heart rate control in the sinoatrial node.Circ Res. 2008 Aug 29;103(5):527-35. doi: 10.1161/CIRCRESAHA.108.180984. Epub 2008 Jul 24. Circ Res. 2008. PMID: 18658048
-
RGS Proteins in Heart: Brakes on the Vagus.Front Physiol. 2012 Apr 13;3:95. doi: 10.3389/fphys.2012.00095. eCollection 2012. Front Physiol. 2012. PMID: 22685433 Free PMC article.
-
Measuring the modulatory effects of RGS proteins on GIRK channels.Methods Enzymol. 2004;389:131-54. doi: 10.1016/S0076-6879(04)89009-8. Methods Enzymol. 2004. PMID: 15313564 Review.
-
RGS Redundancy and Implications in GPCR-GIRK Signaling.Int Rev Neurobiol. 2015;123:87-116. doi: 10.1016/bs.irn.2015.05.010. Epub 2015 Jun 22. Int Rev Neurobiol. 2015. PMID: 26422983 Review.
Cited by
-
Cardiac RGS Proteins in Human Heart Failure and Atrial Fibrillation: Focus on RGS4.Int J Mol Sci. 2023 Mar 24;24(7):6136. doi: 10.3390/ijms24076136. Int J Mol Sci. 2023. PMID: 37047106 Free PMC article. Review.
-
Regulator of G-Protein Signaling-4 Attenuates Cardiac Adverse Remodeling and Neuronal Norepinephrine Release-Promoting Free Fatty Acid Receptor FFAR3 Signaling.Int J Mol Sci. 2022 May 22;23(10):5803. doi: 10.3390/ijms23105803. Int J Mol Sci. 2022. PMID: 35628613 Free PMC article.
-
Cardiac optogenetics: a decade of enlightenment.Nat Rev Cardiol. 2021 May;18(5):349-367. doi: 10.1038/s41569-020-00478-0. Epub 2020 Dec 18. Nat Rev Cardiol. 2021. PMID: 33340010 Free PMC article. Review.
-
The Relevance of GIRK Channels in Heart Function.Membranes (Basel). 2022 Nov 9;12(11):1119. doi: 10.3390/membranes12111119. Membranes (Basel). 2022. PMID: 36363674 Free PMC article. Review.
-
Neurohumoral Control of Sinoatrial Node Activity and Heart Rate: Insight From Experimental Models and Findings From Humans.Front Physiol. 2020 Mar 3;11:170. doi: 10.3389/fphys.2020.00170. eCollection 2020. Front Physiol. 2020. PMID: 32194439 Free PMC article. Review.
References
-
- Aistrup G. L., Cokic I., Ng J., Gordon D., Koduri H., Browne S., Arapi D., Segon Y., Goldstein J., Angulo A., Wasserstrom J. A., Goldberger J. J., Kadish A. H., Arora R. (2011). Targeted nonviral gene-based inhibition of Galpha(i/o)-mediated vagal signaling in the posterior left atrium decreases vagal-induced atrial fibrillation. Heart Rhythm 8, 1722–172910.1016/j.hrthm.2011.06.012 - DOI - PMC - PubMed
-
- Aistrup G. L., Villuendas R., Ng J., Gilchrist A., Lynch T. W., Gordon D., Cokic I., Mottl S., Zhou R., Dean D. A., Wasserstrom J. A., Goldberger J. J., Kadish A. H., Arora R. (2009). Targeted G-protein inhibition as a novel approach to decrease vagal atrial fibrillation by selective parasympathetic attenuation. Cardiovasc. Res. 83, 481–49210.1093/cvr/cvp148 - DOI - PMC - PubMed
-
- Benditt D. G., Sakaguchi S., Goldstein M. A., Lurie K. G., Gornick C. C., Adler S. W. (1995). “Sinus node dysfunction: pathophysiology, clinical features, evaluation, and treatment,” in Cardiac Electrophysiology: From Cell to Bedside, 2nd Edn, eds Zipes D. P., Jalife J. (Philadelphia, PA: WB Saunders Company; ), 1215–1247
LinkOut - more resources
Full Text Sources
Miscellaneous