Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2012 Jul 9;13(10):1465-73.
doi: 10.1002/cbic.201200244. Epub 2012 Jun 18.

Achieving regio- and enantioselectivity of P450-catalyzed oxidative CH activation of small functionalized molecules by structure-guided directed evolution

Affiliations

Achieving regio- and enantioselectivity of P450-catalyzed oxidative CH activation of small functionalized molecules by structure-guided directed evolution

Rubén Agudo et al. Chembiochem. .

Abstract

Directed evolution of the monooxygenase P450-BM3 utilizing iterative saturation mutagenesis at and near the binding site enables a high degree of both regio- and enantioselectivity in the oxidative hydroxylation of cyclohexene-1-carboxylic acid methyl ester. Wild-type P450-BM3 is 84% regioselective for the allylic 3-position with 34% enantioselectivity in favor of the R alcohol. Mutants enabling R selectivity (>95% ee) or S selectivity (>95% ee) were evolved, while reducing other oxidation products and thus maximizing regioselectivity to >93%. Control of the substrate-to-enzyme ratio is necessary for obtaining optimal and reproducible enantioselectivities, an observation which is important in future protein engineering of these mono-oxygenases. An E. coli strain capable of NADPH regeneration was also engineered, simplifying directed evolution of P450 enzymes in general. These synthetic results set the stage for subsequent stereoselective and stereospecific chemical transformations to form more complex compounds, thereby illustrating the viability of combining genetically altered enzymes as catalysts in organic chemistry with traditional chemical methods.

PubMed Disclaimer

Publication types

LinkOut - more resources