Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2012 Jun 20;16(3):225.
doi: 10.1186/cc11297.

Clinical review: Update on neurally adjusted ventilatory assist--report of a round-table conference

Review

Clinical review: Update on neurally adjusted ventilatory assist--report of a round-table conference

Nicolas Terzi et al. Crit Care. .

Abstract

Conventional mechanical ventilators rely on pneumatic pressure and flow sensors and controllers to detect breaths. New modes of mechanical ventilation have been developed to better match the assistance delivered by the ventilator to the patient's needs. Among these modes, neurally adjusted ventilatory assist (NAVA) delivers a pressure that is directly proportional to the integral of the electrical activity of the diaphragm recorded continuously through an esophageal probe. In clinical settings, NAVA has been chiefly compared with pressure-support ventilation, one of the most popular modes used during the weaning phase, which delivers a constant pressure from breath to breath. Comparisons with proportional-assist ventilation, which has numerous similarities, are lacking. Because of the constant level of assistance, pressure-support ventilation reduces the natural variability of the breathing pattern and can be associated with asynchrony and/or overinflation. The ability of NAVA to circumvent these limitations has been addressed in clinical studies and is discussed in this report. Although the underlying concept is fascinating, several important questions regarding the clinical applications of NAVA remain unanswered. Among these questions, determining the optimal NAVA settings according to the patient's ventilatory needs and/or acceptable level of work of breathing is a key issue. In this report, based on an investigator-initiated round table, we review the most recent literature on this topic and discuss the theoretical advantages and disadvantages of NAVA compared with other modes, as well as the risks and limitations of NAVA.

PubMed Disclaimer

Figures

Figure 1
Figure 1
Example of recording during neurally adjusted ventilatory assist and pressure-support ventilation. (a) Neurally adjusted ventilatory assist using the neural trigger: no asynchrony was observed. (b) Pressure-support ventilation: wasted efforts are underscored. Each wasted effort is identified by a blue rectangle.
Figure 2
Figure 2
Titration of the neurally adjusted ventilatory assist level according to Brander and colleagues' procedure. The neurally adjusted ventilatory assist (NAVA) level is increased step by step. VT, tidal volume; Paw, airway pressure; cmH2O/AU, cmH2O per arbitrary unit (the amount of microvolts recorded from the electrical activity of the diaphragm signal).
Figure 3
Figure 3
Change in neurally adjusted ventilatory assist according to maximum diaphragmatic electrical activity during spontaneous breathing. Electrical activity of the diaphragm (EAdi) values during 1 hour, each point representing the mean value over 1 minute. EAdi variations occurred before, during, and after a spontaneous breathing trial (SBT). Maximum EAdi was 21 μV after a SBT of 3 minutes and allowed a reduction in the neurally adjusted ventilatory assist (NAVA) level from 2.4 to 2.2 cmH2O/μV in order to obtain EAdi values after the SBT of about 13 μV (60% of maximum EAdi). Arterial blood gases were not changed by the NAVA level modification.

References

    1. Esteban A, Anzueto A, Alía I, Gordo F, Apezteguía C, Pálizas F, Cide D, Goldwaser R, Soto L, Bugedo G, Rodrigo C, Pimentel J, Raimondi G, Tobin MJ. How is mechanical ventilation employed in the intensive care unit? An international utilization review. Am J Respir Crit Care Med. 2000;161:1450–1458. - PubMed
    1. Esteban A, Ferguson ND, Meade MO, Frutos-Vivar F, Apezteguia C, Brochard L, Raymondos K, Nin N, Hurtado J, Tomicic V, González M, Elizalde J, Nightingale P, Abroug F, Pelosi P, Arabi Y, Moreno R, Jibaja M, D'Empaire G, Sandi F, Matamis D, Montañez AM, Anzueto A; VENTILA Group. Evolution of mechanical ventilation in response to clinical research. Am J Respir Crit Care Med. 2008;177:170–177. - PubMed
    1. Cereda M, Foti G, Marcora B, Gili M, Giacomini M, Sparacino ME, Pesenti A. Pressure support ventilation in patients with acute lung injury. Crit Care Med. 2000;28:1269–1275. doi: 10.1097/00003246-200005000-00002. - DOI - PubMed
    1. Nava S, Bruschi C, Fracchia C, Braschi A, Rubini F. Patient-ventilator interaction and inspiratory effort during pressure support ventilation in patients with different pathologies. Eur Respir J. 1997;10:177–183. doi: 10.1183/09031936.97.10010177. - DOI - PubMed
    1. Navalesi P, Costa R. New modes of mechanical ventilation: proportional assist ventilation, neurally adjusted ventilatory assist, and fractal ventilation. Curr Opin Crit Care. 2003;9:51–58. doi: 10.1097/00075198-200302000-00010. - DOI - PubMed

Publication types

MeSH terms