How an exonuclease decides where to stop in trimming of nucleic acids: crystal structures of RNase T-product complexes
- PMID: 22718982
- PMCID: PMC3439924
- DOI: 10.1093/nar/gks548
How an exonuclease decides where to stop in trimming of nucleic acids: crystal structures of RNase T-product complexes
Abstract
Exonucleases are key enzymes in the maintenance of genome stability, processing of immature RNA precursors and degradation of unnecessary nucleic acids. However, it remains unclear how exonucleases digest nucleic acids to generate correct end products for next-step processing. Here we show how the exonuclease RNase T stops its trimming precisely. The crystal structures of RNase T in complex with a stem-loop DNA, a GG dinucleotide and single-stranded DNA with different 3'-end sequences demonstrate why a duplex with a short 3'-overhang, a dinucleotide and a ssDNA with a 3'-end C cannot be further digested by RNase T. Several hydrophobic residues in RNase T change their conformation upon substrate binding and induce an active or inactive conformation in the active site that construct a precise machine to determine which substrate should be digested based on its sequence, length and structure. These studies thus provide mechanistic insights into how RNase T prevents over digestion of its various substrates, and the results can be extrapolated to the thousands of members of the DEDDh family of exonucleases.
Figures






Similar articles
-
Aromatic residues in RNase T stack with nucleobases to guide the sequence-specific recognition and cleavage of nucleic acids.Protein Sci. 2015 Dec;24(12):1934-41. doi: 10.1002/pro.2800. Epub 2015 Sep 18. Protein Sci. 2015. PMID: 26362012 Free PMC article.
-
Structural basis for RNA trimming by RNase T in stable RNA 3'-end maturation.Nat Chem Biol. 2011 Apr;7(4):236-43. doi: 10.1038/nchembio.524. Epub 2011 Feb 13. Nat Chem Biol. 2011. PMID: 21317904
-
Structural insights into DNA repair by RNase T--an exonuclease processing 3' end of structured DNA in repair pathways.PLoS Biol. 2014 Mar 4;12(3):e1001803. doi: 10.1371/journal.pbio.1001803. eCollection 2014 Mar. PLoS Biol. 2014. PMID: 24594808 Free PMC article.
-
Catalytic properties of the eukaryotic exosome.Adv Exp Med Biol. 2010;702:63-78. Adv Exp Med Biol. 2010. PMID: 21618875 Review.
-
RNase II: the finer details of the Modus operandi of a molecular killer.RNA Biol. 2010 May-Jun;7(3):276-81. doi: 10.4161/rna.7.3.11490. Epub 2010 May 9. RNA Biol. 2010. PMID: 20484980 Review.
Cited by
-
Not making the cut: Techniques to prevent RNA cleavage in structural studies of RNase-RNA complexes.J Struct Biol X. 2022 Mar 11;6:100066. doi: 10.1016/j.yjsbx.2022.100066. eCollection 2022. J Struct Biol X. 2022. PMID: 35340590 Free PMC article. Review.
-
Aromatic residues in RNase T stack with nucleobases to guide the sequence-specific recognition and cleavage of nucleic acids.Protein Sci. 2015 Dec;24(12):1934-41. doi: 10.1002/pro.2800. Epub 2015 Sep 18. Protein Sci. 2015. PMID: 26362012 Free PMC article.
-
PML and PML-like exonucleases restrict retrotransposons in jawed vertebrates.Nucleic Acids Res. 2023 Apr 24;51(7):3185-3204. doi: 10.1093/nar/gkad152. Nucleic Acids Res. 2023. PMID: 36912092 Free PMC article.
-
Examining tRNA 3'-ends in Escherichia coli: teamwork between CCA-adding enzyme, RNase T, and RNase R.RNA. 2018 Mar;24(3):361-370. doi: 10.1261/rna.064436.117. Epub 2017 Nov 27. RNA. 2018. PMID: 29180590 Free PMC article.
-
Structure, function and evolution of the bacterial DinG-like proteins.Comput Struct Biotechnol J. 2025 Mar 17;27:1124-1139. doi: 10.1016/j.csbj.2025.03.023. eCollection 2025. Comput Struct Biotechnol J. 2025. PMID: 40206346 Free PMC article. Review.
References
-
- Shevelev IV, Hubscher U. The 3′-5′ exonucleases. Nat. Rev. Mol. Cell. Biol. 2002;3:364–376. - PubMed
-
- Uhrhammer NA, Lafarge L, Dos Santos L, Domaszewska A, Lange M, Yang Y, Aractingi S, Bessis D, Bignon YJ. Werner syndrome and mutations of the WRN and LMNA genes in France. Hum. Mutat. 2006;27:718–719. - PubMed
-
- Crow YJ, Hayward BE, Parmar R, Robins P, Leitch A, Ali M, Black DN, van Bokhoven H, Brunner HG, Hamel BC, et al. Mutations in the gene encoding the 3′-5′ DNA exonuclease TREX1 cause Aicardi-Goutieres syndrome at the AGS1 locus. Nat. Genet. 2006;38:917–920. - PubMed
Publication types
MeSH terms
Substances
Associated data
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases