Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2012 Jul 25;134(29):12149-56.
doi: 10.1021/ja3034075. Epub 2012 Jul 5.

Copper-catalyzed intramolecular alkene carboetherification: synthesis of fused-ring and bridged-ring tetrahydrofurans

Affiliations

Copper-catalyzed intramolecular alkene carboetherification: synthesis of fused-ring and bridged-ring tetrahydrofurans

Yan Miller et al. J Am Chem Soc. .

Abstract

Fused-ring and bridged-ring tetrahydrofuran scaffolds are found in a number of natural products and biologically active compounds. A new copper-catalyzed intramolecular carboetherification of alkenes for the synthesis of bicyclic tetrahydrofurans is reported herein. The reaction involves Cu-catalyzed intramolecular addition of alcohols to unactivated alkenes and subsequent aryl C-H functionalization provides the C-C bond. Mechanistic studies indicate a primary carbon radical intermediate is involved and radical addition to the aryl ring is the likely C-C bond-forming mechanism. Preliminary catalytic enantioselective reactions are promising (up to 75% ee) and provide evidence that copper is involved in the alkene addition step, likely through a cis-oxycupration mechanism. Catalytic enantioselective alkene carboetherification reactions are rare and future development of this new method into a highly enantioselective process is promising. During the course of the mechanistic studies a protocol for alkene hydroetherification was also developed.

PubMed Disclaimer

Figures

Figure 1
Figure 1
Bioactive fused-ring and bridged-ring tetrahydrofurans
Scheme 1
Scheme 1
Copper-facilitated alkene carboetherifications
Scheme 2
Scheme 2
Rationale for regioisomer formation
Scheme 3
Scheme 3
Enantioselective transannular carboetherification and hydroetherification
Scheme 4
Scheme 4
Proposed carboetherification catalytic cycle

References

    1. Reviews: Boivin TLB. Tetrahedron. 1987;43:3309–3362.; Cardillo G, Orena M. Tetrahedron. 1990;46:3321–3408.; Harmange J-C, Figadere B. Tetrahedron: Asym. 1993;4:1711–1754.; Miura K, Hosomi A. Synlett. 2003:143–155.

    1. Koert U. Synthesis. 1995:115–132.
    2. Bates RH, Chen M, Roush WR. Current Opinion in Drug Discovery & Development. 2008;11:778–792. - PubMed
    3. Kuwano R. Heterocycles. 2008;76:909–922.
    4. Wolfe JP, Hay MB. Tetrahedron. 2007;63:261–290. - PMC - PubMed
    5. Li N, Shi Z, Tang Y, Chen J, Li X. Beilstein J Org Chem. 2008;4(48) doi: 10.3762/bjoc.4.48. - DOI - PMC - PubMed
    1. McDonald RI, Liu G, Stahl SS. Chem Rev. 2011;111:2981–3019.. Piccialli V. Synthesis. 2007:2585–2607.. Majumdar KC, Debnath P, Roy B. Heterocycles. 2009;78:2661–2728.. Wolfe JP. Synlett. 2008;19:2913–2937.. Selected electrophile-activated additions/cyclization of ROH and alkenes: Kang SH, Lee SB, Park CM. J Am Chem Soc. 2003;125:15748–15749.. Zhou L, Tan CK, Jiang X, Chen F, Yeung Y–Y. J Am Chem Soc. 2010;132:15474–15476.. Chen G, Ma S. Angew Chem Int Ed. 2010;49:8306–8308.. Veitch GE, Jacobsen EN. Angew Chem Int Ed. 2010;49:7332–7335.. Murai K, Matsushita KT, Nakamura A, Fukushima S, Shimura M, Fujioka H. Angew Chem Int Ed. 2010;49:9174–9177.. Whitehead DC, Yousefi R, Jaganathan A, Borhan B. J Am Chem Soc. 2010;132:3298–3299.. Yousefi R, Whitehead DC, Mueller JM, Staples RJ, Borhan B. Org Lett. 2011;13:608–611.. Hennecke U, Muller CH, Frohlich R. Org Lett. 2011;13:860–863.. Denmark SE, Burk MT. Org Lett. 2012;14:256–259.

    1. Yoshikawa K, Kokudo N, Tanaka M, Nakano T, Shibata H, Aragaki N, Higuchi T, Hashimoto T. Chem Pharm Bull. 2008;56:89–92. - PubMed
    2. Yao S, Tang CP, Ke CQ, Ye Y. J Nat Prod. 2008;71:1242–1246. - PubMed
    3. Peranza-Sanchez SR, Chavez D, Chai H-B, Shin YG, Garcia R, Mejia M, Fairchild CR, Lane KE, Menendez AT, Farnsworth NR, Cordell GA, Pezzuto JM, Kinghorn AD. J Nat Prod. 2000;63:492–495. - PubMed
    4. Xiao W-L, Yang L-M, Gong N-B, Wu L, Wang R-R, Pu J-X, Li X-L, Huang S-X, Zheng Y-T, Li R-T, Lu Y, Zheng Q-T, Sun H-D. Org Lett. 2006;8:991–994. - PubMed
    5. Han L, Huang X, Sattler I, Moellmann U, Fu H, Lin W, Grabley S. Planta Med. 2005;71:160. - PubMed
    6. Wang J, Soisson SM, Young K, Shoop W, Kodali S, Galgoci A, Painter R, Parthasarathy G, Tang YS, Cummings R, Ha S, Dorso K, Motyl M, Jayasuriya H, Ondeyka J, Herath K, Zhang C, Hernandez L, Allocco J, Basilio A, Tormo JR, Genilloud O, Vincente F, Pelaez F, Colwell L, Lee SH, Michael B, Felcetto T, Gill C, Silver LL, Hermes JD, Bartizal K, Barrett J, Schmatz D, Becker JW, Cully D, Singh SB. Nature. 2006;441:358–361. - PubMed
    1. Solorio DM, Jennings MP. J Org Chem. 2007;72:6621–6623. - PubMed
    2. Fananas FJ, Fernandez A, Cevic D, Rodriguez F. J Org Chem. 2009;74:932–934. - PubMed

Publication types