Phylloquinone and vitamin D status: associations with incident chronic kidney disease in the Framingham Offspring cohort
- PMID: 22722822
- PMCID: PMC3435876
- DOI: 10.1159/000339005
Phylloquinone and vitamin D status: associations with incident chronic kidney disease in the Framingham Offspring cohort
Abstract
Background: Cardiovascular risk factors are associated with the development of chronic kidney disease (CKD), and CKD and vascular disease are etiologically linked. Evidence suggests deficiencies of vitamins D and K may adversely affect the cardiovascular system, but data from longitudinal studies are lacking. We hypothesized that deficiencies of vitamins D and K may be associated with incident CKD and/or incident albuminuria amongst members of the general population.
Methods: We analyzed 1,442 Framingham Heart Study participants (mean age 58 years; 50.5% women), free of CKD (eGFR <60 ml/min/1.73 m(2)), with a mean follow-up of 7.8 years in 2005-2008. Incident albuminuria was defined using sex-specific cut-offs of urine albumin-to-creatinine ratio (≥17 mg/g men and ≥25 mg/g women). Baseline log plasma phylloquinone (vitamin K(1)) and 25(OH)D levels, analyzed as continuous variables and by quartile, were related to risk of incident CKD (n = 108) and incident albuminuria (n = 106) using logistic regression models adjusted for standard risk factors.
Results: Participants in the highest phylloquinone quartile (≥1.78 nmol/l) had an increased risk of CKD (multivariable-adjusted OR Q(4) vs. Q(1) 2.39; p = 0.006) and albuminuria at follow-up (multivariable-adjusted OR Q(4) vs. Q(1) 1.95; p = 0.05), whereas no association was observed with continuous phylloquinone levels for either endpoint. Deficiency of 25(OH)D was not associated with incident CKD or albuminuria in either analysis.
Conclusions: Contrary to our hypothesis, higher plasma phylloquinone levels are associated with an increased risk of incident CKD. Whether plasma phylloquinone is a marker for another unmeasured risk factor requires further study. External validation is necessary given the unexpected nature of these results.
Copyright © 2012 S. Karger AG, Basel.
References
-
- Ronco C, Haapio M, House AA, Anavekar N, Bellomo R. Cardiorenal syndrome. J Am Coll Cardiol. 2008;52(19):1527–39. - PubMed
-
- Russo D, Palmiero G, De Blasio AP, Balletta MM, Andreucci VE. Coronary artery calcification in patients with CRF not undergoing dialysis. Am J Kidney Dis. 2004;44(6):1024–30. - PubMed
-
- Hujairi NM, Afzali B, Goldsmith DJ. Cardiac calcification in renal patients: what we do and don’t know. Am J Kidney Dis. 2004;43(2):234–43. - PubMed
-
- Blacher J, Guerin AP, Pannier B, Marchais SJ, London GM. Arterial calcifications, arterial stiffness, and cardiovascular risk in end-stage renal disease. Hypertension. 2001;38(4):938–42. - PubMed
-
- Blacher J, Guerin AP, Pannier B, Marchais SJ, Safar ME, London GM. Impact of aortic stiffness on survival in end-stage renal disease. Circulation. 1999;99(18):2434–9. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Medical
Research Materials
Miscellaneous
