Proto-genes and de novo gene birth
- PMID: 22722833
- PMCID: PMC3401362
- DOI: 10.1038/nature11184
Proto-genes and de novo gene birth
Abstract
Novel protein-coding genes can arise either through re-organization of pre-existing genes or de novo. Processes involving re-organization of pre-existing genes, notably after gene duplication, have been extensively described. In contrast, de novo gene birth remains poorly understood, mainly because translation of sequences devoid of genes, or 'non-genic' sequences, is expected to produce insignificant polypeptides rather than proteins with specific biological functions. Here we formalize an evolutionary model according to which functional genes evolve de novo through transitory proto-genes generated by widespread translational activity in non-genic sequences. Testing this model at the genome scale in Saccharomyces cerevisiae, we detect translation of hundreds of short species-specific open reading frames (ORFs) located in non-genic sequences. These translation events seem to provide adaptive potential, as suggested by their differential regulation upon stress and by signatures of retention by natural selection. In line with our model, we establish that S. cerevisiae ORFs can be placed within an evolutionary continuum ranging from non-genic sequences to genes. We identify ~1,900 candidate proto-genes among S. cerevisiae ORFs and find that de novo gene birth from such a reservoir may be more prevalent than sporadic gene duplication. Our work illustrates that evolution exploits seemingly dispensable sequences to generate adaptive functional innovation.
Figures




Comment in
-
Evolution: the birth of new genes.Nat Rev Genet. 2012 Jul 3;13(8):521. doi: 10.1038/nrg3287. Nat Rev Genet. 2012. PMID: 22751427 No abstract available.
Similar articles
-
A putative scenario of how de novo protein-coding genes originate in the Saccharomyces cerevisiae lineage.BMC Genomics. 2024 Sep 5;25(Suppl 3):834. doi: 10.1186/s12864-024-10669-5. BMC Genomics. 2024. PMID: 39237856 Free PMC article.
-
A Comprehensive Analysis of Transcript-Supported De Novo Genes in Saccharomyces sensu stricto Yeasts.Mol Biol Evol. 2017 Nov 1;34(11):2823-2838. doi: 10.1093/molbev/msx210. Mol Biol Evol. 2017. PMID: 28981695 Free PMC article.
-
De novo emergence of adaptive membrane proteins from thymine-rich genomic sequences.Nat Commun. 2020 Feb 7;11(1):781. doi: 10.1038/s41467-020-14500-z. Nat Commun. 2020. PMID: 32034123 Free PMC article.
-
From non-coding to coding: The importance of long non-coding RNA translation in de novo gene birth.Biochim Biophys Acta Gen Subj. 2025 Feb;1869(2):130747. doi: 10.1016/j.bbagen.2024.130747. Epub 2024 Dec 19. Biochim Biophys Acta Gen Subj. 2025. PMID: 39708923 Review.
-
Translation of Small Open Reading Frames: Roles in Regulation and Evolutionary Innovation.Trends Genet. 2019 Mar;35(3):186-198. doi: 10.1016/j.tig.2018.12.003. Epub 2018 Dec 31. Trends Genet. 2019. PMID: 30606460 Review.
Cited by
-
In vivo function and evolution of the eutherian-specific pluripotency marker UTF1.PLoS One. 2013 Jul 9;8(7):e68119. doi: 10.1371/journal.pone.0068119. Print 2013. PLoS One. 2013. PMID: 23874519 Free PMC article.
-
Long noncoding RNAs: past, present, and future.Genetics. 2013 Mar;193(3):651-69. doi: 10.1534/genetics.112.146704. Genetics. 2013. PMID: 23463798 Free PMC article. Review.
-
Examining the evolution of the regulatory circuit controlling secondary metabolism and development in the fungal genus Aspergillus.PLoS Genet. 2015 Mar 18;11(3):e1005096. doi: 10.1371/journal.pgen.1005096. eCollection 2015 Mar. PLoS Genet. 2015. PMID: 25786130 Free PMC article.
-
Computational Identification of Novel Genes: Current and Future Perspectives.Bioinform Biol Insights. 2016 Aug 1;10:121-31. doi: 10.4137/BBI.S39950. eCollection 2016. Bioinform Biol Insights. 2016. PMID: 27493475 Free PMC article. Review.
-
Ribosome profiling provides evidence that large noncoding RNAs do not encode proteins.Cell. 2013 Jul 3;154(1):240-51. doi: 10.1016/j.cell.2013.06.009. Epub 2013 Jun 27. Cell. 2013. PMID: 23810193 Free PMC article.
References
-
- Tautz D, Domazet-Loso T. The evolutionary origin of orphan genes. Nat. Rev. Genet. 2011;12:692–702. - PubMed
-
- Jacob F. Evolution and tinkering. Science. 1977;196:1161–1166. - PubMed
-
- Khalturin K, Hemmrich G, Fraune S, Augustin R, Bosch TC. More than just orphans: are taxonomically-restricted genes important in evolution? Trends Genet. 2009;25:404–413. - PubMed
Publication types
MeSH terms
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases