Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2012 Oct;50(10):1047-57.
doi: 10.1007/s11517-012-0932-6. Epub 2012 Jun 22.

Non-invasive continuous glucose monitoring: improved accuracy of point and trend estimates of the Multisensor system

Affiliations

Non-invasive continuous glucose monitoring: improved accuracy of point and trend estimates of the Multisensor system

Mattia Zanon et al. Med Biol Eng Comput. 2012 Oct.

Abstract

Non-invasive continuous glucose monitoring (NI-CGM) sensors are still at an early stage of development, but, in the near future, they could become particularly appealing in diabetes management. Solianis Monitoring AG (Zurich, Switzerland) has proposed an approach for NI-CGM based on a multi-sensor concept, embedding primarily dielectric spectroscopy and optical sensors. This concept requires a mathematical model able to estimate glucose levels from the 150 channels directly measured through the Multisensor. A static multivariate linear regression model (with order and parameters common to the entire population of subjects) was proposed for such a scope (Caduff et al., Biosens Bioelectron 26:3794-3800, 2011). The aim of this work is to evaluate the accuracy in the estimation of glucose levels and trends that the NI-CGM Multisensor platform can achieve by exploiting different techniques for model identification, namely, ordinary least squares, subset variable selection, partial least squares and least absolute shrinkage and selection operator (LASSO). Data collected in human beings monitored for a total of 45 study days were used for model identification and model test. Several metrics of standard use in the diabetes scientific community to measure point and clinical accuracy of glucose sensors were used to assess the models. Results indicate that the LASSO technique is superior to the others shrinking many channel weights to zero thus leading to smoother glucose profiles and resulting in a more robust model to possible artifacts in the Multisensor data. Although, as expected, the performance of the NI-CGM system with the LASSO model is not yet comparable with that of enzyme-based needle glucose sensors, glucose trends are satisfactorily estimated. Considering the non-invasive nature of the multi-sensor platform, this result can have an immediate impact in the current clinical practice, e.g., to integrate sparse self-monitoring of blood glucose data with an indication of the glucose trend to aid the diabetic patient in dealing with, or even preventing in the short time scale, the threats of critical events such as hypoglycaemia.

PubMed Disclaimer

Similar articles

Cited by

References

    1. Biosens Bioelectron. 2006 Dec 15;22(5):598-604 - PubMed
    1. Diabetes Technol Ther. 2011 Aug;13(8):843-52 - PubMed
    1. IEEE Trans Biomed Eng. 2012 Jun;59(6):1658-69 - PubMed
    1. Diabetes Technol Ther. 2005 Feb;7(1):28-47 - PubMed
    1. Med Biol Eng Comput. 2010 Dec;48(12):1191-201 - PubMed

Publication types

LinkOut - more resources