Fine-tuning multiprotein complexes using small molecules
- PMID: 22725693
- PMCID: PMC3517816
- DOI: 10.1021/cb300255p
Fine-tuning multiprotein complexes using small molecules
Abstract
Multiprotein complexes such as the transcriptional machinery, signaling hubs, and protein folding machines are typically composed of at least one enzyme combined with multiple non-enzymes. Often the components of these complexes are incorporated in a combinatorial manner, in which the ultimate composition of the system helps dictate the type, location, or duration of cellular activities. Although drugs and chemical probes have traditionally targeted the enzyme components, emerging strategies call for controlling the function of protein complexes by modulation of protein-protein interactions (PPIs). However, the challenges of targeting PPIs have been well documented, and the diversity of PPIs makes a "one-size-fits-all" solution highly unlikely. These hurdles are particularly daunting for PPIs that encompass large buried surface areas and those with weak affinities. In this Review, we discuss lessons from natural systems, in which allostery and other mechanisms are used to overcome the challenge of regulating the most difficult PPIs. These systems may provide a blueprint for identifying small molecules that target challenging PPIs and affecting molecular decision-making within multiprotein systems.
Figures
References
-
- Rual JF, Venkatesan K, Hao T, Hirozane-Kishikawa T, Dricot A, Li N, Berriz GF, Gibbons FD, Dreze M, Ayivi-Guedehoussou N, Klitgord N, Simon C, Boxem M, Milstein S, Rosenberg J, Goldberg DS, Zhang LV, Wong SL, Franklin G, Li S, Albala JS, Lim J, Fraughton C, Llamosas E, Cevik S, Bex C, Lamesch P, Sikorski RS, Vandenhaute J, Zoghbi HY, Smolyar A, Bosak S, Sequerra R, Doucette-Stamm L, Cusick ME, Hill DE, Roth FP, Vidal M. Towards a proteome-scale map of the human protein-protein interaction network. Nature. 2005;437:1173–1178. - PubMed
-
- Hopkins AL, Groom CR. The druggable genome. Nat Rev Drug Discov. 2002;1:727–730. - PubMed
-
- Cravatt BF, Simon GM, Yates JR., 3rd The biological impact of mass-spectrometry-based proteomics. Nature. 2007;450:991–1000. - PubMed
-
- Powers ET, Morimoto RI, Dillin A, Kelly JW, Balch WE. Biological and chemical approaches to diseases of proteostasis deficiency. Annu Rev Biochem. 2009;78:959–991. - PubMed
-
- Surade S, Blundell TL. Structural biology and drug discovery of difficult targets: the limits of ligandability. Chem Biol. 2012;19:42–50. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Miscellaneous
