Mini-review: the evolution of neuropeptide signaling
- PMID: 22726357
- DOI: 10.1016/j.regpep.2012.05.001
Mini-review: the evolution of neuropeptide signaling
Abstract
Neuropeptides and their G protein-coupled receptors (GPCRs) have an early evolutionary origin and are already abundant in basal animals with primitive nervous systems such as cnidarians (Hydra, jellyfishes, corals, and sea anemones). Most animals emerging after the Cnidaria belong to two evolutionary lineages, the Protostomia (to which the majority of invertebrates belong) and Deuterostomia (to which some minor groups of invertebrates, and all vertebrates belong). These two lineages split about 700 million years (Myr) ago. Many mammalian neuropeptide GPCRs have orthologues in the Protostomia and this is also true for some of the mammalian neuropeptides. Examples are oxytocin/vasopressin, GnRH, gastrin/CCK, and neuropeptide Y and their GPCRs. These results implicate that protostomes (for example insects and nematodes) can be used as models to study the biology of neuropeptide signaling.
Copyright © 2012 Elsevier B.V. All rights reserved.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources