Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2016 Feb;25(1):315-35.
doi: 10.1177/0962280212452333. Epub 2012 Jun 22.

Causal inference with a quantitative exposure

Affiliations
Review

Causal inference with a quantitative exposure

Zhiwei Zhang et al. Stat Methods Med Res. 2016 Feb.

Abstract

The current statistical literature on causal inference is mostly concerned with binary or categorical exposures, even though exposures of a quantitative nature are frequently encountered in epidemiologic research. In this article, we review the available methods for estimating the dose-response curve for a quantitative exposure, which include ordinary regression based on an outcome regression model, inverse propensity weighting and stratification based on a propensity function model, and an augmented inverse propensity weighting method that is doubly robust with respect to the two models. We note that an outcome regression model often imposes an implicit constraint on the dose-response curve, and propose a flexible modeling strategy that avoids constraining the dose-response curve. We also propose two new methods: a weighted regression method that combines ordinary regression with inverse propensity weighting and a stratified regression method that combines ordinary regression with stratification. The proposed methods are similar to the augmented inverse propensity weighting method in the sense of double robustness, but easier to implement and more generally applicable. The methods are illustrated with an obstetric example and compared in simulation studies.

Keywords: Dose–response relationship; double robustness; inverse probability weighting; outcome regression; propensity function; propensity score; stratification.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources