Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2012 Sep-Oct;34(5):495-504.
doi: 10.1016/j.ntt.2012.06.002. Epub 2012 Jun 23.

d-Methionine protects against cisplatin-induced neurotoxicity in cortical networks

Affiliations

d-Methionine protects against cisplatin-induced neurotoxicity in cortical networks

Kamakshi V Gopal et al. Neurotoxicol Teratol. 2012 Sep-Oct.

Abstract

Cisplatin is a platinum-based chemotherapeutic agent widely used for the treatment of various types of cancer. Patients undergoing cisplatin treatment often suffer from a condition known as "chemobrain", ototoxicity, peripheral neuropathy, weight loss, nausea, vomiting, nephrotoxicity, seizures, hearing loss and tinnitus. d-Methionine (d-Met), a sulfur-containing nucleophilic antioxidant, has been shown to prevent cisplatin-induced side effects in animals without antitumor interference. In this study, we have used an in vitro model of cortical networks (CNs), enriched in auditory cortex cells; to quantify cisplatin neurotoxicity and the protective effects of d-Met. Dissociated neurons from auditory cortices of mouse embryos were grown on microelectrode arrays with 64 transparent indium-tin oxide electrodes, which enabled continuous optical and electrophysiological monitoring of network neurons. Cisplatin at 0.10-0.25 mM induced up to a 200% increase in spontaneous spiking activity, while concentrations at or above 0.5mM caused irreversible loss of neuronal activity, accompanied by cell death. Pretreatment with d-Met, at a concentration of 1.0mM, prevented the cisplatin-induced excitation at 0.10-0.25 mM, caused sustained excitation without occurrence of cell death at 0.5mM, and delayed cell death at 0.75 mM cisplatin. l-Methionine, the optical isomer, showed lower potency and less efficacy than d-Met, was less protective against 0.1mM cisplatin, and proved ineffective at a concentration of 0.5mM cisplatin. Pre-exposure time of d-Met was associated with the protective effects at 0.1 and 0.5mM cisplatin, with longer pre-exposure times exhibiting better protection. This study quantifies as a function of concentration and time that d-Met protects central nervous system tissue from acute cisplatin toxicity.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources