Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2012 May;15(3):120-6.
doi: 10.1179/1476830511Y.0000000033.

Cellular and molecular mechanisms of antioxidants in Parkinson's disease

Affiliations
Review

Cellular and molecular mechanisms of antioxidants in Parkinson's disease

Jhon Jairo Sutachan et al. Nutr Neurosci. 2012 May.

Abstract

Parkinson's disease (PD) is a neurodegenerative movement disorder characterized by the degeneration and progressive loss of dopaminergic neurons in the substantia nigra pars compacta. It has been suggested that oxidative stress plays a role in the etiology and progression of PD. For instance, low levels of endogenous antioxidants, increased reactive species, augmented dopamine oxidation, and high iron levels have been found in brains from PD patients. In vitro and in vivo studies of Parkinson models evaluating natural and endogenous antioxidants such as polyphenols, coenzyme Q10, and vitamins A, C, and E have shown protective effects against oxidative-induced neuronal death. In this paper, we will review the mechanisms by which polyphenols and endogenous antioxidants can produce protection. Some of the mechanisms reviewed include: scavenging nitrogen and oxygen reactive species, regulation of signaling pathways associated with cell survival and inflammation, and inhibition of synphilin-1 and alpha-synuclein aggregation.

PubMed Disclaimer

MeSH terms

LinkOut - more resources