Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2012 Jul 27;424(2):239-44.
doi: 10.1016/j.bbrc.2012.06.083. Epub 2012 Jun 22.

Overexpression of PeRHD3 alters the root architecture in Populus

Affiliations

Overexpression of PeRHD3 alters the root architecture in Populus

Meng Xu et al. Biochem Biophys Res Commun. .

Abstract

Adventitious rooting is essential for the vegetative propagation of economically important woody species. A better understanding of the genetic and physiological mechanisms that promote or hinder rooting will enhance the potential for successful commercial deployment of trees. ROOT HAIR DEFECTIVE 3 (RHD3), a large GTP-binding protein, is ubiquitously expressed in plants. Our previous microarray study identified differential expression patterns of genes belonging to the RHD3 family during adventitious root development from hardwood cuttings, and indicated that the RHD3 genes were involved in adventitious rooting in Populus. In this study, we cloned and characterized cDNAs of the two Populus RHD3 genes, designated as PeRHD3a and PeRHD3b. Transcripts encoded by the two genes were detected in roots, stems, leaves and petioles. To characterize the cellular functions of the genes, Agrobacterium tumifaciens was used to transform poplar with a vector that places expression of the target gene under the control of the strong constitutive promoter, Cauliflower Mosaic Virus 35S (Pro35S) promoter. Both PeRHD3a transgenic lines and PeRHD3b transgenic lines showed very similar phenotypic characteristics. Overexpression of PeRHD3a or PeRHD3b in poplar plants resulted in the formation of only a single prominent adventitious root with well-developed lateral roots, characteristic abnormalities in the root tip, and longer and more plentiful root hairs. These results imply that RHD3 may control adventitious and lateral root formation, as well as root hair development by regulating anisotropic cell expansion.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources