Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1990 May;13(5):292-300.
doi: 10.1248/bpb1978.13.292.

Sodium and pH dependent carrier-mediated transport of antibiotic, fosfomycin, in the rat intestinal brush-border membrane

Affiliations

Sodium and pH dependent carrier-mediated transport of antibiotic, fosfomycin, in the rat intestinal brush-border membrane

T Ishizawa et al. J Pharmacobiodyn. 1990 May.

Abstract

The mechanism of intestinal absorption of an antimicrobial agent, fosfomycin (FOM), was investigated in rats using small intestinal brush-border membrane vesicles (BBMV). The uptake of [3H]FOM by BBMV was osmolarity- and temperature-sensitive and showed apparently saturable uptake kinetics consistent with the Michaelis-Menten equation, having Kt = 15.3 mM and Jmax = 7.78 nmol/30 s/mg protein at 37 degrees C. An overshoot uptake of FOM was observed in the presence of an inwardly direct Na+ gradient. The replacement of extravesicular Na+ with choline or mannitol significantly reduced the uptake. An addition of a protonophore, FCCP, significantly decreased the initial uptake of FOM in the absence of Na+ gradient but in the presence of a H+ gradient (pHin = 7.5, pHout = 6.0), whereas in the absence of a H+ gradient no significant difference was observed between the uptakes at an acidic pH (pHin = pHout = 6.0) and a neutral pH (pHin = pHout = 7.5). An inside negative potassium diffusion potential induced by valinomycin enhanced significantly the uptake of FOM. The uptake of FOM in the presence of both Na(+)- and H(+)-gradients was significantly inhibited by phosphate, arsenate and phosphonoformic acid (PFA), which are specific inhibitors of phosphate transport, but not by D-glucose. Based on these results, it is concluded that FOM transport in the small intestine is partially shared with the Na(+)-phosphate cotransport system and in part occurs via a H(+)-gradient dependent carrier-mediated system.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms